mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-18 08:55:51 +00:00
test: ⚡
This commit is contained in:
Submodule src/cppmdlp updated: 50543e4921...35c532bf1d
@@ -14,8 +14,8 @@ cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
||||
|
||||
cdef class CFImdlp:
|
||||
cdef CPPFImdlp *thisptr
|
||||
def __cinit__(self, proposal):
|
||||
self.thisptr = new CPPFImdlp(proposal)
|
||||
def __cinit__(self, algorithm):
|
||||
self.thisptr = new CPPFImdlp(algorithm)
|
||||
def __dealloc__(self):
|
||||
del self.thisptr
|
||||
def fit(self, X, y):
|
||||
|
@@ -7,23 +7,22 @@ from joblib import Parallel, delayed
|
||||
|
||||
|
||||
class FImdlp(TransformerMixin, BaseEstimator):
|
||||
def __init__(self, n_jobs=-1, proposal=0):
|
||||
def __init__(self, algorithm=0, n_jobs=-1):
|
||||
self.algorithm = algorithm
|
||||
self.n_jobs = n_jobs
|
||||
self.proposal = proposal
|
||||
|
||||
"""Fayyad - Irani MDLP discretization algorithm based implementation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
algorithm : int, default=0
|
||||
The type of algorithm to use computing the cut points.
|
||||
0 - Definitive implementation
|
||||
1 - Alternative proposal
|
||||
n_jobs : int, default=-1
|
||||
The number of jobs to run in parallel. :meth:`fit` and
|
||||
:meth:`transform`, are parallelized over the features. ``-1`` means
|
||||
using all cores available.
|
||||
proposal : int, default=0
|
||||
The type of algorithm to use computing the cut points.
|
||||
0 - Normal implementation
|
||||
1 - JA Proposal
|
||||
2 - Original proposal
|
||||
|
||||
Attributes
|
||||
----------
|
||||
@@ -100,7 +99,7 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
|
||||
def _fit_discretizer(self, feature):
|
||||
if feature in self.features_:
|
||||
self.discretizer_[feature] = CFImdlp(proposal=self.proposal)
|
||||
self.discretizer_[feature] = CFImdlp(algorithm=self.algorithm)
|
||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||
self.cut_points_[feature] = self.discretizer_[
|
||||
feature
|
||||
@@ -136,7 +135,10 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
raise ValueError(
|
||||
"Shape of input is different from what was seen in `fit`"
|
||||
)
|
||||
result = np.zeros_like(X, dtype=np.int32) - 1
|
||||
if len(self.features_) == self.n_features_:
|
||||
result = np.zeros_like(X, dtype=np.int32) - 1
|
||||
else:
|
||||
result = np.zeros_like(X) - 1
|
||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||
delayed(self._discretize_feature)(feature, X[:, feature], result)
|
||||
for feature in range(self.n_features_)
|
||||
|
@@ -14,47 +14,41 @@ class FImdlpTest(unittest.TestCase):
|
||||
def test_init(self):
|
||||
clf = FImdlp()
|
||||
self.assertEqual(-1, clf.n_jobs)
|
||||
self.assertEqual(0, clf.proposal)
|
||||
clf = FImdlp(proposal=1, n_jobs=7)
|
||||
self.assertEqual(1, clf.proposal)
|
||||
self.assertEqual(0, clf.algorithm)
|
||||
clf = FImdlp(algorithm=1, n_jobs=7)
|
||||
self.assertEqual(1, clf.algorithm)
|
||||
self.assertEqual(7, clf.n_jobs)
|
||||
|
||||
def test_fit_proposal(self):
|
||||
clf = FImdlp(proposal=1)
|
||||
def test_fit_definitive(self):
|
||||
clf = FImdlp(algorithm=0)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
||||
self.assertListEqual([[], []], clf.get_cut_points())
|
||||
self.assertListEqual([[2.0], [3.0]], clf.get_cut_points())
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
expected = [
|
||||
[
|
||||
4.900000095367432,
|
||||
5.0,
|
||||
5.099999904632568,
|
||||
5.400000095367432,
|
||||
5.699999809265137,
|
||||
],
|
||||
[2.6999998092651367, 2.9000000953674316, 3.1999998092651367],
|
||||
[2.3499999046325684, 4.5, 4.800000190734863],
|
||||
[0.75, 1.399999976158142, 1.5, 1.7000000476837158],
|
||||
[5.449999809265137, 6.25],
|
||||
[2.8499999046325684, 3.0, 3.049999952316284, 3.3499999046325684],
|
||||
[2.450000047683716, 4.75, 5.050000190734863],
|
||||
[0.800000011920929, 1.4500000476837158, 1.75],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
clf.fit(X, y, features=[0, 2, 3])
|
||||
self.assertListEqual([0, 2, 3], clf.features_)
|
||||
|
||||
def test_fit_original(self):
|
||||
clf = FImdlp(proposal=0)
|
||||
def test_fit_alternative(self):
|
||||
clf = FImdlp(algorithm=1)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
||||
self.assertListEqual([[], []], clf.get_cut_points())
|
||||
self.assertListEqual([[2], [3]], clf.get_cut_points())
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
@@ -62,10 +56,10 @@ class FImdlpTest(unittest.TestCase):
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
|
||||
expected = [
|
||||
[5.5, 5.800000190734863],
|
||||
[2.9000000953674316, 3.3499999046325684],
|
||||
[2.450000047683716, 4.800000190734863],
|
||||
[0.800000011920929, 1.7999999523162842],
|
||||
[5.449999809265137, 5.75],
|
||||
[2.8499999046325684, 3.3499999046325684],
|
||||
[2.450000047683716, 4.75],
|
||||
[0.800000011920929, 1.75],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
@@ -89,45 +83,58 @@ class FImdlpTest(unittest.TestCase):
|
||||
|
||||
def test_fit_features(self):
|
||||
clf = FImdlp()
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0])
|
||||
res = clf.transform([[1, 2], [3, 4]])
|
||||
self.assertListEqual(res.tolist(), [[0, 2], [0, 4]])
|
||||
clf.fit([[1, -2], [3, 4]], [1, 2], features=[0])
|
||||
res = clf.transform([[1, -2], [3, 4]])
|
||||
self.assertListEqual(res.tolist(), [[0, -2], [1, 4]])
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X_expected = X[:, [0, 2]].copy()
|
||||
clf.fit(X, y, features=[1, 3])
|
||||
X_computed = clf.transform(X)
|
||||
self.assertListEqual(
|
||||
X_expected[:, 0].tolist(), X_computed[:, 0].tolist()
|
||||
)
|
||||
self.assertListEqual(
|
||||
X_expected[:, 1].tolist(), X_computed[:, 2].tolist()
|
||||
)
|
||||
self.assertEqual(X_computed.dtype, np.float64)
|
||||
|
||||
def test_transform_original(self):
|
||||
clf = FImdlp(proposal=0)
|
||||
def test_transform_definitive(self):
|
||||
clf = FImdlp(algorithm=0)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
|
||||
)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
X_transformed = clf.transform(X)
|
||||
self.assertListEqual(
|
||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
X_transformed.tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
)
|
||||
self.assertEqual(X_transformed.dtype, np.int32)
|
||||
expected = [
|
||||
[0, 0, 1, 1],
|
||||
[2, 1, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 1, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[0, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 1, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 1, 1, 1],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp(proposal=0)
|
||||
clf = FImdlp(algorithm=0)
|
||||
clf.transform([[1, 2], [3, 4]])
|
||||
|
||||
def test_transform_proposal(self):
|
||||
clf = FImdlp(proposal=1)
|
||||
def test_transform_alternative(self):
|
||||
clf = FImdlp(algorithm=1)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
|
||||
)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
@@ -138,17 +145,17 @@ class FImdlpTest(unittest.TestCase):
|
||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
)
|
||||
expected = [
|
||||
[4, 0, 1, 1],
|
||||
[5, 2, 2, 2],
|
||||
[5, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[4, 1, 1, 1],
|
||||
[5, 2, 1, 1],
|
||||
[5, 1, 1, 1],
|
||||
[2, 1, 1, 1],
|
||||
[2, 0, 1, 1],
|
||||
[0, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 1, 1, 1],
|
||||
[1, 1, 1, 1],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp(proposal=1)
|
||||
clf = FImdlp(algorithm=1)
|
||||
clf.transform([[1, 2], [3, 4]])
|
||||
|
Reference in New Issue
Block a user