mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-17 00:15:52 +00:00
Add tests to 100% coverage to Python
This commit is contained in:
3
Makefile
3
Makefile
@@ -10,13 +10,14 @@ clean: ## Clean up
|
||||
if [ -d fimdlp/testcpp/lcoverage ]; then rm -fr fimdlp/testcpp/lcoverage/* ; fi;
|
||||
|
||||
test:
|
||||
python -m unittest -v fimdlp.tests
|
||||
coverage run -m unittest -v fimdlp.tests
|
||||
cd fimdlp/testcpp && ./test
|
||||
|
||||
coverage:
|
||||
if [ -d fimdlp/testcpp/build/CMakeFiles ]; then rm -fr fimdlp/testcpp/build/CMakeFiles/* ; fi;
|
||||
make test
|
||||
cd fimdlp/testcpp && ./cover
|
||||
coverage report -m
|
||||
|
||||
lint: ## Lint and static-check
|
||||
black fimdlp
|
||||
|
45
debug.cpp
45
debug.cpp
@@ -1,14 +1,49 @@
|
||||
std::cout << "+++++++++++++++++++++++" << std::endl;
|
||||
for (size_t i = 0; i < y.size(); i++)
|
||||
{
|
||||
for (size_t i = 0; i < y.size(); i++) {
|
||||
printf("(%3.1f, %d)\n", X[indices.at(i)], y[indices.at(i)]);
|
||||
}
|
||||
std::cout << "+++++++++++++++++++++++" << std::endl;
|
||||
|
||||
std::cout << "Information Gain:" << std::endl;
|
||||
auto nc = Metrics::numClasses(y, indices, 0, indices.size());
|
||||
for (auto cutPoint = cutIdx.begin(); cutPoint != cutIdx.end(); ++cutPoint)
|
||||
{
|
||||
for (auto cutPoint = cutIdx.begin(); cutPoint != cutIdx.end(); ++cutPoint) {
|
||||
std::cout << *cutPoint << " -> " << Metrics::informationGain(y, indices, 0, indices.size(), *cutPoint, nc) << std::endl;
|
||||
// << Metrics::informationGain(y, 0, y.size(), *cutPoint, Metrics::numClasses(y, 0, y.size())) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
def test(self) :
|
||||
print("Calculating cut points in python for first feature")
|
||||
yz = self.y_.copy()
|
||||
xz = X[:, 0].copy()
|
||||
xz = xz[np.argsort(X[:, 0])]
|
||||
yz = yz[np.argsort(X[:, 0])]
|
||||
cuts = []
|
||||
for i in range(1, len(yz)) :
|
||||
if yz[i] != yz[i - 1] and xz[i - 1] < xz[i] :
|
||||
print(f"Cut point: ({xz[i-1]}, {xz[i]}) ({yz[i-1]}, {yz[i]})")
|
||||
cuts.append((xz[i] + xz[i - 1]) / 2)
|
||||
print("Cuts calculados en python: ", cuts)
|
||||
print("-- Cuts calculados en C++ --")
|
||||
print("Cut points for each feature in Iris dataset:")
|
||||
for i in range(0, 1) :
|
||||
# datax = self.X_[np.argsort(self.X_[:, i]), i]
|
||||
# y_ = self.y_[np.argsort(self.X_[:, i])]
|
||||
datax = self.X_[:, i]
|
||||
y_ = self.y_
|
||||
self.discretizer_.fit(datax, y_)
|
||||
Xcutpoints = self.discretizer_.get_cut_points()
|
||||
print(
|
||||
f"New ({len(Xcutpoints)}):{self.features_[i]:20s}: "
|
||||
f"{[i['toValue'] for i in Xcutpoints]}"
|
||||
)
|
||||
X_translated = [
|
||||
f"{i['classNumber']} - ({i['start']}, {i['end']}) - "
|
||||
f"({i['fromValue']}, {i['toValue']})"
|
||||
for i in Xcutpoints
|
||||
]
|
||||
print(X_translated)
|
||||
print("*******************************")
|
||||
print("Disretized values:")
|
||||
print(self.discretizer_.get_discretized_values())
|
||||
print("*******************************")
|
||||
return X
|
@@ -110,40 +110,3 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
for feature in range(self.n_features_):
|
||||
result.append(self.cut_points_[feature][:-1])
|
||||
return result
|
||||
|
||||
def test(self):
|
||||
print("Calculating cut points in python for first feature")
|
||||
yz = self.y_.copy()
|
||||
xz = X[:, 0].copy()
|
||||
xz = xz[np.argsort(X[:, 0])]
|
||||
yz = yz[np.argsort(X[:, 0])]
|
||||
cuts = []
|
||||
for i in range(1, len(yz)):
|
||||
if yz[i] != yz[i - 1] and xz[i - 1] < xz[i]:
|
||||
print(f"Cut point: ({xz[i-1]}, {xz[i]}) ({yz[i-1]}, {yz[i]})")
|
||||
cuts.append((xz[i] + xz[i - 1]) / 2)
|
||||
print("Cuts calculados en python: ", cuts)
|
||||
print("-- Cuts calculados en C++ --")
|
||||
print("Cut points for each feature in Iris dataset:")
|
||||
for i in range(0, 1):
|
||||
# datax = self.X_[np.argsort(self.X_[:, i]), i]
|
||||
# y_ = self.y_[np.argsort(self.X_[:, i])]
|
||||
datax = self.X_[:, i]
|
||||
y_ = self.y_
|
||||
self.discretizer_.fit(datax, y_)
|
||||
Xcutpoints = self.discretizer_.get_cut_points()
|
||||
print(
|
||||
f"New ({len(Xcutpoints)}):{self.features_[i]:20s}: "
|
||||
f"{[i['toValue'] for i in Xcutpoints]}"
|
||||
)
|
||||
X_translated = [
|
||||
f"{i['classNumber']} - ({i['start']}, {i['end']}) - "
|
||||
f"({i['fromValue']}, {i['toValue']})"
|
||||
for i in Xcutpoints
|
||||
]
|
||||
print(X_translated)
|
||||
print("*******************************")
|
||||
print("Disretized values:")
|
||||
print(self.discretizer_.get_discretized_values())
|
||||
print("*******************************")
|
||||
return X
|
||||
|
@@ -31,8 +31,22 @@ class FImdlpTest(unittest.TestCase):
|
||||
[0.75, 1.399999976158142, 1.5],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual(
|
||||
["feature_0", "feature_1", "feature_2", "feature_3"], clf.features_
|
||||
)
|
||||
self.assertEqual("class", clf.class_name_)
|
||||
clf.fit(X, y, features=["a", "b", "c", "d"], class_name="class_name")
|
||||
self.assertListEqual(["a", "b", "c", "d"], clf.features_)
|
||||
self.assertEqual("class_name", clf.class_name_)
|
||||
|
||||
def test_fit_Errors(self):
|
||||
clf = FImdlp()
|
||||
with self.assertRaises(ValueError):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2, 3])
|
||||
with self.assertRaises(ValueError):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=["a", "b", "c"])
|
||||
with self.assertRaises(ValueError):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], unexpected="class_name")
|
||||
|
||||
def test_transform(self):
|
||||
clf = FImdlp()
|
||||
|
Reference in New Issue
Block a user