mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-15 15:35:52 +00:00
Add print graph strees to img folder
This commit is contained in:
2
img/.gitignore
vendored
Normal file
2
img/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
*
|
||||
!.gitignore
|
85
src/print_strees.py
Normal file
85
src/print_strees.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import os
|
||||
import subprocess
|
||||
import argparse
|
||||
import json
|
||||
from stree import Stree
|
||||
from graphviz import Source
|
||||
from Experiments import Datasets
|
||||
from Utils import Files, Folders
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument(
|
||||
"-c",
|
||||
"--color",
|
||||
type=bool,
|
||||
required=False,
|
||||
default=False,
|
||||
help="use colors for the tree",
|
||||
)
|
||||
args = ap.parse_args()
|
||||
return (args.color,)
|
||||
|
||||
|
||||
def compute_stree(X, y, random_state):
|
||||
clf = Stree(random_state=random_state)
|
||||
clf.fit(X, y)
|
||||
return clf
|
||||
|
||||
|
||||
def load_hyperparams(score_name, model_name):
|
||||
grid_file = os.path.join(
|
||||
Folders.results, Files.grid_output(score_name, model_name)
|
||||
)
|
||||
with open(grid_file) as f:
|
||||
return json.load(f)
|
||||
|
||||
|
||||
def hyperparam_filter(hyperparams):
|
||||
res = {}
|
||||
for key, value in hyperparams.items():
|
||||
if key.startswith("base_estimator"):
|
||||
newkey = key.split("__")[1]
|
||||
res[newkey] = value
|
||||
return res
|
||||
|
||||
|
||||
def build_title(dataset, accuracy, n_samples, n_features, n_classes, nodes):
|
||||
dataset_chars = f"-{dataset}- f={n_features} s={n_samples} c={n_classes}"
|
||||
return (
|
||||
f'<font point-size="25" color="brown">{dataset_chars}<BR/></font>'
|
||||
f'<font point-size="20" color="red">accuracy: {accuracy:.6f} / '
|
||||
f"{nodes} nodes</font>"
|
||||
)
|
||||
|
||||
|
||||
def print_stree(clf, dataset, X, y):
|
||||
output_folder = "img"
|
||||
samples, features = X.shape
|
||||
classes = max(y) + 1
|
||||
accuracy = clf.score(X, y)
|
||||
nodes, _ = clf.nodes_leaves()
|
||||
title = build_title(dataset, accuracy, samples, features, classes, nodes)
|
||||
grp = Source(clf.graph(title))
|
||||
file_name = os.path.join(output_folder, f"stree_{dataset}")
|
||||
grp.render(format="png", filename=f"{file_name}")
|
||||
os.remove(f"{file_name}")
|
||||
print(f"File {file_name}.png generated")
|
||||
cmd_open = "/usr/bin/open"
|
||||
if os.path.isfile(cmd_open) and os.access(cmd_open, os.X_OK):
|
||||
subprocess.run([cmd_open, f"{file_name}.png"])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
(color,) = parse_arguments()
|
||||
hyperparameters = load_hyperparams("accuracy", "ODTE")
|
||||
random_state = 57
|
||||
dt = Datasets()
|
||||
for dataset in dt:
|
||||
X, y = dt.load(dataset)
|
||||
clf = Stree(random_state=random_state)
|
||||
hyperparams_dataset = hyperparam_filter(hyperparameters[dataset][1])
|
||||
clf.set_params(**hyperparams_dataset)
|
||||
clf.fit(X, y)
|
||||
print_stree(clf, dataset, X, y)
|
Reference in New Issue
Block a user