mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-15 15:35:52 +00:00
Refactor Datasets
This commit is contained in:
5
.github/workflows/main.yml
vendored
5
.github/workflows/main.yml
vendored
@@ -12,11 +12,8 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [macos-latest, ubuntu-latest]
|
||||
os: [ubuntu-latest]
|
||||
python: ["3.10", "3.11"]
|
||||
exclude:
|
||||
- os: macos-latest
|
||||
python: "3.11"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
@@ -31,6 +31,7 @@ class DatasetsArff:
|
||||
data = arff.loadarff(file_name)
|
||||
df = pd.DataFrame(data[0])
|
||||
df.dropna(axis=0, how="any", inplace=True)
|
||||
self.dataset = df
|
||||
X = df.drop(class_name, axis=1)
|
||||
self.features = X.columns
|
||||
self.class_name = class_name
|
||||
@@ -55,8 +56,12 @@ class DatasetsTanveer:
|
||||
sep="\t",
|
||||
index_col=0,
|
||||
)
|
||||
X = data.drop("clase", axis=1).to_numpy()
|
||||
X = data.drop("clase", axis=1)
|
||||
self.features = X.columns
|
||||
X = X.to_numpy()
|
||||
y = data["clase"].to_numpy()
|
||||
self.dataset = data
|
||||
self.class_name = "clase"
|
||||
return X, y
|
||||
|
||||
|
||||
@@ -77,8 +82,11 @@ class DatasetsSurcov:
|
||||
)
|
||||
data.dropna(axis=0, how="any", inplace=True)
|
||||
self.columns = data.columns
|
||||
col_list = ["class"]
|
||||
X = data.drop(col_list, axis=1).to_numpy()
|
||||
X = data.drop(["class"], axis=1)
|
||||
self.features = X.columns
|
||||
self.class_name = "class"
|
||||
self.dataset = data
|
||||
X = X.to_numpy()
|
||||
y = data["class"].to_numpy()
|
||||
return X, y
|
||||
|
||||
@@ -86,43 +94,42 @@ class DatasetsSurcov:
|
||||
class Datasets:
|
||||
def __init__(self, dataset_name=None):
|
||||
envData = EnvData.load()
|
||||
class_name = getattr(
|
||||
# DatasetsSurcov, DatasetsTanveer, DatasetsArff,...
|
||||
source_name = getattr(
|
||||
__import__(__name__),
|
||||
f"Datasets{envData['source_data']}",
|
||||
)
|
||||
self.load = (
|
||||
self.load_discretized
|
||||
if envData["discretize"] == "1"
|
||||
else self.load_continuous
|
||||
)
|
||||
self.dataset = class_name()
|
||||
self.discretize = envData["discretize"] == "1"
|
||||
self.dataset = source_name()
|
||||
self.class_names = []
|
||||
self._load_names()
|
||||
if dataset_name is not None:
|
||||
try:
|
||||
class_name = self.class_names[
|
||||
self.data_sets.index(dataset_name)
|
||||
]
|
||||
self.class_names = [class_name]
|
||||
except ValueError:
|
||||
raise ValueError(f"Unknown dataset: {dataset_name}")
|
||||
self.data_sets = [dataset_name]
|
||||
self.data_sets = []
|
||||
# initialize self.class_names & self.data_sets
|
||||
class_names, sets = self._init_names(dataset_name)
|
||||
self.class_names = class_names
|
||||
self.data_sets = sets
|
||||
|
||||
def _load_names(self):
|
||||
def _init_names(self, dataset_name):
|
||||
file_name = os.path.join(self.dataset.folder(), Files.index)
|
||||
default_class = "class"
|
||||
with open(file_name) as f:
|
||||
self.data_sets = f.read().splitlines()
|
||||
self.class_names = [default_class] * len(self.data_sets)
|
||||
if "," in self.data_sets[0]:
|
||||
sets = f.read().splitlines()
|
||||
class_names = [default_class] * len(sets)
|
||||
if "," in sets[0]:
|
||||
result = []
|
||||
class_names = []
|
||||
for data in self.data_sets:
|
||||
for data in sets:
|
||||
name, class_name = data.split(",")
|
||||
result.append(name)
|
||||
class_names.append(class_name)
|
||||
self.data_sets = result
|
||||
self.class_names = class_names
|
||||
sets = result
|
||||
# Set as dataset list the dataset passed as argument
|
||||
if dataset_name is None:
|
||||
return class_names, sets
|
||||
try:
|
||||
class_name = class_names[sets.index(dataset_name)]
|
||||
except ValueError:
|
||||
raise ValueError(f"Unknown dataset: {dataset_name}")
|
||||
return [class_name], [dataset_name]
|
||||
|
||||
def get_attributes(self, name):
|
||||
class Attributes:
|
||||
@@ -148,14 +155,25 @@ class Datasets:
|
||||
def get_class_name(self):
|
||||
return self.dataset.class_name
|
||||
|
||||
def load_continuous(self, name):
|
||||
def get_dataset(self):
|
||||
return self.dataset.dataset
|
||||
|
||||
def load(self, name, dataframe=False):
|
||||
try:
|
||||
class_name = self.class_names[self.data_sets.index(name)]
|
||||
return self.dataset.load(name, class_name)
|
||||
X, y = self.dataset.load(name, class_name)
|
||||
if self.discretize:
|
||||
X = self.discretize_dataset(X, y)
|
||||
dataset = pd.DataFrame(X, columns=self.get_features())
|
||||
dataset[self.get_class_name()] = y
|
||||
self.dataset.dataset = dataset
|
||||
if dataframe:
|
||||
return self.get_dataset()
|
||||
return X, y
|
||||
except (ValueError, FileNotFoundError):
|
||||
raise ValueError(f"Unknown dataset: {name}")
|
||||
|
||||
def discretize(self, X, y):
|
||||
def discretize_dataset(self, X, y):
|
||||
"""Supervised discretization with Fayyad and Irani's MDLP algorithm.
|
||||
|
||||
Parameters
|
||||
@@ -173,14 +191,5 @@ class Datasets:
|
||||
Xdisc = discretiz.fit_transform(X, y)
|
||||
return Xdisc
|
||||
|
||||
def load_discretized(self, name, dataframe=False):
|
||||
X, yd = self.load_continuous(name)
|
||||
Xd = self.discretize(X, yd)
|
||||
dataset = pd.DataFrame(Xd, columns=self.get_features())
|
||||
dataset[self.get_class_name()] = yd
|
||||
if dataframe:
|
||||
return dataset
|
||||
return Xd, yd
|
||||
|
||||
def __iter__(self) -> Diterator:
|
||||
return Diterator(self.data_sets)
|
||||
|
@@ -33,8 +33,8 @@ class DatasetTest(TestBase):
|
||||
def test_load_dataframe(self):
|
||||
self.set_env(".env.arff")
|
||||
dt = Datasets()
|
||||
X, y = dt.load_discretized("iris", dataframe=False)
|
||||
dataset = dt.load_discretized("iris", dataframe=True)
|
||||
X, y = dt.load("iris", dataframe=False)
|
||||
dataset = dt.load("iris", dataframe=True)
|
||||
class_name = dt.get_class_name()
|
||||
features = dt.get_features()
|
||||
self.assertListEqual(y.tolist(), dataset[class_name].tolist())
|
||||
|
2
setup.py
2
setup.py
@@ -61,8 +61,6 @@ setuptools.setup(
|
||||
classifiers=[
|
||||
"Development Status :: 4 - Beta",
|
||||
"License :: OSI Approved :: " + get_data("license"),
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Natural Language :: English",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
|
Reference in New Issue
Block a user