mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-15 23:45:54 +00:00
Fix nan in sorted
Fix liblinear experiments
This commit is contained in:
@@ -12,28 +12,29 @@
|
||||
#ODTE_accuracy_slurm_0202_5.sh, ODTE&ODTE Random Forest rbf-trandom&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE_accuracy_slurm_0202_6.sh, ODTE&ODTE Random Forest linear-trandom&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
# Pseudo Random Forest
|
||||
ODTE&ODTE pseudo Random Forest rbf-best max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt" "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest linear-best max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest rbf-random max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest linear-random max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest rbf-trandom max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest linear-trandom max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest rbf-best max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest linear-best max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest rbf-random max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest linear-random max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest rbf-trandom max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
ODTE&ODTE pseudo Random Forest linear-trandom max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest rbf-best max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt" "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest linear-best max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest rbf-random max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest linear-random max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest rbf-trandom max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest linear-trandom max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest rbf-best max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest linear-best max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest rbf-random max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest linear-random max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest rbf-trandom max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
#ODTE&ODTE pseudo Random Forest linear-trandom max_samples-0.75&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
|
||||
#
|
||||
# kernel liblinear Random Forest and pseudo Random Forest
|
||||
# RF
|
||||
ODTE&ODTE Random Forest liblinear-best max_features-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"best\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-random max_features-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"random\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-trandom max_features-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-best max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"best\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
ODTE&ODTE Random Forest liblinear-random max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"random\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
ODTE&ODTE Random Forest liblinear-trandom max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
# pseudo RF
|
||||
ODTE&ODTE Random Forest liblinear-best max_samples-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-random max_samples-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-trandom max_samples-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-best max_features-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-random max_features-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE Random Forest liblinear-trandom max_features-sqrt&'{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}'
|
||||
ODTE&ODTE pseudo Random Forest liblinear-best max_samples-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"best\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
ODTE&ODTE pseudo Random Forest liblinear-random max_samples-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"random\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
ODTE&ODTE pseudo Random Forest liblinear-trandom max_samples-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
ODTE&ODTE pseudo Random Forest liblinear-best max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"best\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
ODTE&ODTE pseudo Random Forest liblinear-random max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"random\", \"multiclass_strategy\": \"ovr\"}"}
|
||||
ODTE&ODTE pseudo Random Forest liblinear-trandom max_features-sqrt&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "be_hyperparams": "{\"kernel\": \"liblinear\", \"splitter\": \"trandom\", \"multiclass_strategy\": \"ovr\"}"}# RF
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import os
|
||||
import math
|
||||
import json
|
||||
import abc
|
||||
import shutil
|
||||
@@ -741,7 +742,7 @@ class Summary:
|
||||
file_name = data["file"]
|
||||
metric = data["metric"]
|
||||
result = StubReport(os.path.join(Folders.results, file_name))
|
||||
length = 80
|
||||
length = 81
|
||||
print("*" * length)
|
||||
if title != "":
|
||||
print(f"*{title:^{length - 2}s}*")
|
||||
@@ -786,7 +787,11 @@ class Summary:
|
||||
else [x for x in haystack if x[criterion] == value]
|
||||
)
|
||||
return (
|
||||
sorted(haystack, key=lambda x: x["metric"], reverse=True)[0]
|
||||
sorted(
|
||||
haystack,
|
||||
key=lambda x: -1.0 if math.isnan(x["metric"]) else x["metric"],
|
||||
reverse=True,
|
||||
)[0]
|
||||
if len(haystack) > 0
|
||||
else {}
|
||||
)
|
||||
|
Reference in New Issue
Block a user