Add experiment script generation

This commit is contained in:
2022-02-02 11:32:56 +01:00
parent 7402b910e7
commit 5eef692eea
8 changed files with 128 additions and 5 deletions

2
experiments/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
path.txt
*.sh

View File

@@ -0,0 +1,82 @@
import argparse
import datetime
def parse_arguments():
ap = argparse.ArgumentParser()
ap.add_argument(
"-s",
"--score",
type=str,
required=False,
default="accuracy",
help="score used in experiment",
)
ap.add_argument(
"-p",
"--platform",
type=str,
required=True,
choices=["pbs", "slurm"],
help="Platform used to run the experiments {pbs, slurm}",
)
args = ap.parse_args()
return (
args.score,
args.platform,
)
def content(file_name):
with open(file_name) as f:
return f.read().splitlines()
def generate_experiment(data, score, platform):
generate_experiment.idx += 1
path = content("path.txt")[0]
file_name = "experiment.pbs" if platform == "pbs" else "experiment.slurm"
lines = content(file_name)
lines.extend(content("script.txt"))
day = (
f"{datetime.datetime.now().month:02d}{datetime.datetime.now().day:02d}"
)
(model, title, parameters) = data.split("&")
strings = [
("<date>", day),
("<folder>", path),
("<score>", score),
("<model>", model),
("<title>", title),
("<parameters>", parameters),
]
output_file_name = (
f"{model}_{score}_{platform}_{day}_{generate_experiment.idx}.sh"
)
data = lines.copy()
for item, value in strings:
data = [line.replace(item, value) for line in data]
with open(output_file_name, "w") as f:
f.write("\n".join(data))
return output_file_name
(
score,
platform,
) = parse_arguments()
generate_experiment.idx = 0
output = ""
with open("experiments.txt") as f:
lines = f.read().splitlines()
for line in lines:
if line.startswith("#") or line.strip() == "":
output += line + "\n"
else:
file_name = generate_experiment(line, score, platform)
output += f"#{file_name}, {line}\n"
print(f"Generated {file_name}")
with open("experiments.txt", "w") as f:
print(output, file=f)

View File

@@ -0,0 +1,18 @@
#!/bin/bash
### Nombre de trabajo
#PBS -N <model>-<score>-<date>
### Seleccion de cola de trabajos
#PBS -q workq
### mezcla errores con la salida principal
#PBS -j oe
### Recursos
#PBS -l select=1:ncpus=16:mem=56Gb
#PBS -l place=exclhost
### Esportar variables de entorno
#PBS -V
### Send email on end
#PBS -m e
### Specify mail recipient
#PBS -M ricardo.montanana@alu.uclm.es
### Ejecutable con sus parametros

View File

@@ -0,0 +1,11 @@
#!/bin/bash
#SBATCH --partition=qdata
#SBATCH --exclusive
#SBATCH --ntasks=10 # number of processor cores (i.e. tasks)
#SBATCH --nodes=1 # number of nodes
#SBATCH --job-name="<model>-<score>-<date>"
#SBATCH --mail-user=ricardo.montanana@alu.uclm.es # email address
#SBATCH --mail-type=END
#SBATCH -w nodo-7-33
# LOAD MODULES, INSERT CODE, AND RUN YOUR PROGRAMS HERE

View File

@@ -0,0 +1,13 @@
# Experiments to do:
# Bagging
# Random Forest
# Odte
# Random Forest
#ODTE_accuracy_slurm_0202_1.sh, ODTE&ODTE Random Forest rbf-best&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
#ODTE_accuracy_slurm_0202_2.sh, ODTE&ODTE Random Forest linear-best&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"best\", \"max_features\": \"sqrt\"}"}
#ODTE_accuracy_slurm_0202_3.sh, ODTE&ODTE Random Forest rbf-random&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
#ODTE_accuracy_slurm_0202_4.sh, ODTE&ODTE Random Forest linear-random&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"random\", \"max_features\": \"sqrt\"}"}
#ODTE_accuracy_slurm_0202_5.sh, ODTE&ODTE Random Forest rbf-trandom&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"rbf\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}
#ODTE_accuracy_slurm_0202_6.sh, ODTE&ODTE Random Forest linear-trandom&{"n_jobs": 10, "n_estimators": 100, "max_features": "sqrt", "max_samples": 0.75, "be_hyperparams": "{\"kernel\": \"linear\", \"splitter\": \"trandom\", \"max_features\": \"sqrt\"}"}

Binary file not shown.

2
experiments/script.txt Normal file
View File

@@ -0,0 +1,2 @@
cd <folder>
python src/main.py -m <model> -s <score> --title "<title>" -p '<parameters>'

View File

@@ -1,5 +0,0 @@
Experiments to do:
Bagging
Odte
Random Forest