mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-16 07:55:54 +00:00
Update E203 in main.yml
Create tests
This commit is contained in:
2
.github/workflows/main.yml
vendored
2
.github/workflows/main.yml
vendored
@@ -46,7 +46,7 @@ jobs:
|
||||
- name: Lint
|
||||
run: |
|
||||
black --check --diff benchmark
|
||||
flake8 --count benchmark
|
||||
flake8 --count benchmark --ignore=E203
|
||||
- name: Tests
|
||||
run: |
|
||||
coverage run -m unittest -v benchmark.tests
|
||||
|
@@ -80,7 +80,7 @@ class DatasetsSurcov:
|
||||
|
||||
class Datasets:
|
||||
def __init__(self, dataset_name=None):
|
||||
default_class = "class"
|
||||
|
||||
envData = EnvData.load()
|
||||
class_name = getattr(
|
||||
__import__(__name__),
|
||||
@@ -88,24 +88,32 @@ class Datasets:
|
||||
)
|
||||
self.dataset = class_name()
|
||||
self.class_names = []
|
||||
if dataset_name is None:
|
||||
file_name = os.path.join(self.dataset.folder(), Files.index)
|
||||
with open(file_name) as f:
|
||||
self.data_sets = f.read().splitlines()
|
||||
self.class_names = [default_class] * len(self.data_sets)
|
||||
if "," in self.data_sets[0]:
|
||||
result = []
|
||||
class_names = []
|
||||
for data in self.data_sets:
|
||||
name, class_name = data.split(",")
|
||||
result.append(name)
|
||||
class_names.append(class_name)
|
||||
self.data_sets = result
|
||||
self.class_names = class_names
|
||||
|
||||
else:
|
||||
self.load_names()
|
||||
if dataset_name is not None:
|
||||
try:
|
||||
class_name = self.class_names[
|
||||
self.data_sets.index(dataset_name)
|
||||
]
|
||||
self.class_names = [class_name]
|
||||
except ValueError:
|
||||
raise ValueError(f"Unknown dataset: {dataset_name}")
|
||||
self.data_sets = [dataset_name]
|
||||
self.class_names = [default_class]
|
||||
|
||||
def load_names(self):
|
||||
file_name = os.path.join(self.dataset.folder(), Files.index)
|
||||
default_class = "class"
|
||||
with open(file_name) as f:
|
||||
self.data_sets = f.read().splitlines()
|
||||
self.class_names = [default_class] * len(self.data_sets)
|
||||
if "," in self.data_sets[0]:
|
||||
result = []
|
||||
class_names = []
|
||||
for data in self.data_sets:
|
||||
name, class_name = data.split(",")
|
||||
result.append(name)
|
||||
class_names.append(class_name)
|
||||
self.data_sets = result
|
||||
self.class_names = class_names
|
||||
|
||||
def load(self, name):
|
||||
try:
|
||||
|
6
benchmark/tests/.env.arff
Normal file
6
benchmark/tests/.env.arff
Normal file
@@ -0,0 +1,6 @@
|
||||
score=accuracy
|
||||
platform=MacBookpro16
|
||||
n_folds=5
|
||||
model=ODTE
|
||||
stratified=0
|
||||
source_data=Arff
|
@@ -29,6 +29,7 @@ class DatasetTest(TestBase):
|
||||
test = {
|
||||
".env.dist": ["balance-scale", "balloons"],
|
||||
".env.surcov": ["iris", "wine"],
|
||||
".env.arff": ["iris", "wine"],
|
||||
}
|
||||
for key, value in test.items():
|
||||
self.set_env(key)
|
||||
@@ -52,6 +53,11 @@ class DatasetTest(TestBase):
|
||||
self.assertSequenceEqual(X.shape, (625, 4))
|
||||
self.assertSequenceEqual(y.shape, (625,))
|
||||
|
||||
def test_create_with_unknown_dataset(self):
|
||||
with self.assertRaises(ValueError) as msg:
|
||||
Datasets("unknown")
|
||||
self.assertEqual(str(msg.exception), "Unknown dataset: unknown")
|
||||
|
||||
def test_load_unknown_dataset(self):
|
||||
dt = Datasets()
|
||||
with self.assertRaises(ValueError) as msg:
|
||||
@@ -62,6 +68,7 @@ class DatasetTest(TestBase):
|
||||
test = {
|
||||
".env.dist": "balloons",
|
||||
".env.surcov": "wine",
|
||||
".env.arff": "iris",
|
||||
}
|
||||
for key, value in test.items():
|
||||
self.set_env(key)
|
||||
|
@@ -14,6 +14,7 @@ class TestBase(unittest.TestCase):
|
||||
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
||||
self.test_files = "test_files"
|
||||
self.output = "sys.stdout"
|
||||
self.ext = ".test"
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def remove_files(self, files, folder):
|
||||
@@ -31,7 +32,7 @@ class TestBase(unittest.TestCase):
|
||||
print(f'{row};{col};"{value}"', file=f)
|
||||
|
||||
def check_excel_sheet(self, sheet, file_name):
|
||||
file_name += ".test"
|
||||
file_name += self.ext
|
||||
with open(os.path.join(self.test_files, file_name), "r") as f:
|
||||
expected = csv.reader(f, delimiter=";")
|
||||
for row, col, value in expected:
|
||||
@@ -45,7 +46,7 @@ class TestBase(unittest.TestCase):
|
||||
self.assertEqual(sheet.cell(int(row), int(col)).value, value)
|
||||
|
||||
def check_output_file(self, output, file_name):
|
||||
file_name += ".test"
|
||||
file_name += self.ext
|
||||
with open(os.path.join(self.test_files, file_name)) as f:
|
||||
expected = f.read()
|
||||
self.assertEqual(output.getvalue(), expected)
|
||||
@@ -58,7 +59,7 @@ class TestBase(unittest.TestCase):
|
||||
def check_file_file(self, computed_file, expected_file):
|
||||
with open(computed_file) as f:
|
||||
computed = f.read()
|
||||
expected_file += ".test"
|
||||
expected_file += self.ext
|
||||
with open(os.path.join(self.test_files, expected_file)) as f:
|
||||
expected = f.read()
|
||||
self.assertEqual(computed, expected)
|
||||
|
@@ -1,2 +1,2 @@
|
||||
iris
|
||||
wine
|
||||
iris,class
|
||||
wine,class
|
||||
|
305
benchmark/tests/datasets/hayes-roth.arff
Executable file
305
benchmark/tests/datasets/hayes-roth.arff
Executable file
@@ -0,0 +1,305 @@
|
||||
% 1. Title: Hayes-Roth & Hayes-Roth (1977) Database
|
||||
%
|
||||
% 2. Source Information:
|
||||
% (a) Creators: Barbara and Frederick Hayes-Roth
|
||||
% (b) Donor: David W. Aha (aha@ics.uci.edu) (714) 856-8779
|
||||
% (c) Date: March, 1989
|
||||
%
|
||||
% 3. Past Usage:
|
||||
% 1. Hayes-Roth, B., & Hayes-Roth, F. (1977). Concept learning and the
|
||||
% recognition and classification of exemplars. Journal of Verbal Learning
|
||||
% and Verbal Behavior, 16, 321-338.
|
||||
% -- Results:
|
||||
% -- Human subjects classification and recognition performance:
|
||||
% 1. decreases with distance from the prototype,
|
||||
% 2. is better on unseen prototypes than old instances, and
|
||||
% 3. improves with presentation frequency during learning.
|
||||
% 2. Anderson, J.R., & Kline, P.J. (1979). A learning system and its
|
||||
% psychological implications. In Proceedings of the Sixth International
|
||||
% Joint Conference on Artificial Intelligence (pp. 16-21). Tokyo, Japan:
|
||||
% Morgan Kaufmann.
|
||||
% -- Partitioned the results into 4 classes:
|
||||
% 1. prototypes
|
||||
% 2. near-prototypes with high presentation frequency during learning
|
||||
% 3. near-prototypes with low presentation frequency during learning
|
||||
% 4. instances that are far from protoypes
|
||||
% -- Described evidence that ACT's classification confidence and
|
||||
% recognition behaviors closely simulated human subjects' behaviors.
|
||||
% 3. Aha, D.W. (1989). Incremental learning of independent, overlapping, and
|
||||
% graded concept descriptions with an instance-based process framework.
|
||||
% Manuscript submitted for publication.
|
||||
% -- Used same partition as Anderson & Kline
|
||||
% -- Described evidence that Bloom's classification confidence behavior
|
||||
% is similar to the human subjects' behavior. Bloom fitted the data
|
||||
% more closely than did ACT.
|
||||
%
|
||||
% 4. Relevant Information:
|
||||
% This database contains 5 numeric-valued attributes. Only a subset of
|
||||
% 3 are used during testing (the latter 3). Furthermore, only 2 of the
|
||||
% 3 concepts are "used" during testing (i.e., those with the prototypes
|
||||
% 000 and 111). I've mapped all values to their zero-indexing equivalents.
|
||||
%
|
||||
% Some instances could be placed in either category 0 or 1. I've followed
|
||||
% the authors' suggestion, placing them in each category with equal
|
||||
% probability.
|
||||
%
|
||||
% I've replaced the actual values of the attributes (i.e., hobby has values
|
||||
% chess, sports and stamps) with numeric values. I think this is how
|
||||
% the authors' did this when testing the categorization models described
|
||||
% in the paper. I find this unfair. While the subjects were able to bring
|
||||
% background knowledge to bear on the attribute values and their
|
||||
% relationships, the algorithms were provided with no such knowledge. I'm
|
||||
% uncertain whether the 2 distractor attributes (name and hobby) are
|
||||
% presented to the authors' algorithms during testing. However, it is clear
|
||||
% that only the age, educational status, and marital status attributes are
|
||||
% given during the human subjects' transfer tests.
|
||||
%
|
||||
% 5. Number of Instances: 132 training instances, 28 test instances
|
||||
%
|
||||
% 6. Number of Attributes: 5 plus the class membership attribute. 3 concepts.
|
||||
%
|
||||
% 7. Attribute Information:
|
||||
% -- 1. name: distinct for each instance and represented numerically
|
||||
% -- 2. hobby: nominal values ranging between 1 and 3
|
||||
% -- 3. age: nominal values ranging between 1 and 4
|
||||
% -- 4. educational level: nominal values ranging between 1 and 4
|
||||
% -- 5. marital status: nominal values ranging between 1 and 4
|
||||
% -- 6. class: nominal value between 1 and 3
|
||||
%
|
||||
% 9. Missing Attribute Values: none
|
||||
%
|
||||
% 10. Class Distribution: see below
|
||||
%
|
||||
% 11. Detailed description of the experiment:
|
||||
% 1. 3 categories (1, 2, and neither -- which I call 3)
|
||||
% -- some of the instances could be classified in either class 1 or 2, and
|
||||
% they have been evenly distributed between the two classes
|
||||
% 2. 5 Attributes
|
||||
% -- A. name (a randomly-generated number between 1 and 132)
|
||||
% -- B. hobby (a randomly-generated number between 1 and 3)
|
||||
% -- C. age (a number between 1 and 4)
|
||||
% -- D. education level (a number between 1 and 4)
|
||||
% -- E. marital status (a number between 1 and 4)
|
||||
% 3. Classification:
|
||||
% -- only attributes C-E are diagnostic; values for A and B are ignored
|
||||
% -- Class Neither: if a 4 occurs for any attribute C-E
|
||||
% -- Class 1: Otherwise, if (# of 1's)>(# of 2's) for attributes C-E
|
||||
% -- Class 2: Otherwise, if (# of 2's)>(# of 1's) for attributes C-E
|
||||
% -- Either 1 or 2: Otherwise, if (# of 2's)=(# of 1's) for attributes C-E
|
||||
% 4. Prototypes:
|
||||
% -- Class 1: 111
|
||||
% -- Class 2: 222
|
||||
% -- Class Either: 333
|
||||
% -- Class Neither: 444
|
||||
% 5. Number of training instances: 132
|
||||
% -- Each instance presented 0, 1, or 10 times
|
||||
% -- None of the prototypes seen during training
|
||||
% -- 3 instances from each of categories 1, 2, and either are repeated
|
||||
% 10 times each
|
||||
% -- 3 additional instances from the Either category are shown during
|
||||
% learning
|
||||
% 5. Number of test instances: 28
|
||||
% -- All 9 class 1
|
||||
% -- All 9 class 2
|
||||
% -- All 6 class Either
|
||||
% -- All 4 prototypes
|
||||
% --------------------
|
||||
% -- 28 total
|
||||
%
|
||||
% Observations of interest:
|
||||
% 1. Relative classification confidence of
|
||||
% -- prototypes for classes 1 and 2 (2 instances)
|
||||
% (Anderson calls these Class 1 instances)
|
||||
% -- instances of class 1 with frequency 10 during training and
|
||||
% instances of class 2 with frequency 10 during training that
|
||||
% are 1 value away from their respective prototypes (6 instances)
|
||||
% (Anderson calls these Class 2 instances)
|
||||
% -- instances of class 1 with frequency 1 during training and
|
||||
% instances of class 2 with frequency 1 during training that
|
||||
% are 1 value away from their respective prototypes (6 instances)
|
||||
% (Anderson calls these Class 3 instances)
|
||||
% -- instances of class 1 with frequency 1 during training and
|
||||
% instances of class 2 with frequency 1 during training that
|
||||
% are 2 values away from their respective prototypes (6 instances)
|
||||
% (Anderson calls these Class 4 instances)
|
||||
% 2. Relative classification recognition of them also
|
||||
%
|
||||
% Some Expected results:
|
||||
% Both frequency and distance from prototype will effect the classification
|
||||
% accuracy of instances. Greater the frequency, higher the classification
|
||||
% confidence. Closer to prototype, higher the classification confidence.
|
||||
%
|
||||
% Information about the dataset
|
||||
% CLASSTYPE: nominal
|
||||
% CLASSINDEX: last
|
||||
%
|
||||
|
||||
@relation hayes-roth
|
||||
|
||||
@attribute hobby INTEGER
|
||||
@attribute age INTEGER
|
||||
@attribute educational_level INTEGER
|
||||
@attribute marital_status INTEGER
|
||||
@attribute class {1,2,3,4}
|
||||
|
||||
@data
|
||||
2,1,1,2,1
|
||||
2,1,3,2,2
|
||||
3,1,4,1,3
|
||||
2,4,2,2,3
|
||||
1,1,3,4,3
|
||||
1,1,3,2,2
|
||||
3,1,3,2,2
|
||||
3,4,2,4,3
|
||||
2,2,1,1,1
|
||||
3,2,1,1,1
|
||||
1,2,1,1,1
|
||||
2,2,3,4,3
|
||||
1,1,2,1,1
|
||||
2,1,2,2,2
|
||||
2,4,1,4,3
|
||||
1,1,3,3,1
|
||||
3,2,1,2,2
|
||||
1,2,1,1,1
|
||||
3,3,2,1,1
|
||||
3,1,3,2,1
|
||||
1,2,2,1,2
|
||||
3,2,1,3,1
|
||||
2,1,2,1,1
|
||||
3,2,1,3,1
|
||||
2,3,2,1,1
|
||||
3,2,2,1,2
|
||||
3,2,1,3,2
|
||||
2,1,2,2,2
|
||||
1,1,3,2,1
|
||||
3,2,1,1,1
|
||||
1,4,1,1,3
|
||||
2,2,1,3,1
|
||||
1,2,1,3,2
|
||||
1,1,1,2,1
|
||||
2,4,3,1,3
|
||||
3,1,2,2,2
|
||||
1,1,2,2,2
|
||||
3,2,2,1,2
|
||||
1,2,1,2,2
|
||||
3,4,3,2,3
|
||||
2,2,2,1,2
|
||||
2,2,1,2,2
|
||||
3,2,1,3,2
|
||||
3,2,1,1,1
|
||||
3,1,2,1,1
|
||||
1,2,1,3,2
|
||||
2,1,1,2,1
|
||||
1,1,1,2,1
|
||||
1,2,2,3,2
|
||||
3,3,1,1,1
|
||||
3,3,3,1,1
|
||||
3,2,1,2,2
|
||||
3,2,1,2,2
|
||||
3,1,2,1,1
|
||||
1,1,1,2,1
|
||||
2,1,3,2,1
|
||||
2,2,2,1,2
|
||||
2,1,2,1,1
|
||||
2,2,1,3,1
|
||||
2,1,2,2,2
|
||||
1,2,4,2,3
|
||||
2,2,1,2,2
|
||||
1,1,2,4,3
|
||||
1,3,2,1,1
|
||||
2,4,4,2,3
|
||||
2,3,2,1,1
|
||||
3,1,2,2,2
|
||||
1,1,2,2,2
|
||||
1,3,2,4,3
|
||||
1,1,2,2,2
|
||||
3,1,4,2,3
|
||||
2,1,3,2,2
|
||||
1,1,3,2,2
|
||||
3,1,3,2,1
|
||||
1,2,4,4,3
|
||||
1,4,2,1,3
|
||||
2,1,2,1,1
|
||||
3,4,1,2,3
|
||||
2,2,1,1,1
|
||||
1,1,2,1,1
|
||||
2,2,4,3,3
|
||||
3,1,2,2,2
|
||||
1,1,3,2,1
|
||||
1,2,1,3,1
|
||||
1,4,4,1,3
|
||||
3,3,3,2,2
|
||||
2,2,1,3,2
|
||||
3,3,2,1,2
|
||||
1,1,1,3,1
|
||||
2,2,1,2,2
|
||||
2,2,2,1,2
|
||||
2,3,2,3,2
|
||||
1,3,2,1,2
|
||||
2,2,1,2,2
|
||||
1,1,1,2,1
|
||||
3,2,2,1,2
|
||||
3,2,1,1,1
|
||||
1,1,2,1,1
|
||||
3,1,4,4,3
|
||||
3,3,2,1,2
|
||||
2,3,2,1,2
|
||||
2,1,3,1,1
|
||||
1,2,1,2,2
|
||||
3,1,1,2,1
|
||||
2,2,4,1,3
|
||||
1,2,2,1,2
|
||||
2,3,2,1,2
|
||||
2,2,1,4,3
|
||||
1,4,2,3,3
|
||||
2,2,1,1,1
|
||||
1,2,1,1,1
|
||||
2,2,3,2,2
|
||||
1,3,2,1,1
|
||||
3,1,2,1,1
|
||||
3,1,1,2,1
|
||||
3,3,1,4,3
|
||||
2,3,4,1,3
|
||||
1,2,3,3,2
|
||||
3,3,2,2,2
|
||||
3,3,4,2,3
|
||||
1,2,2,1,2
|
||||
2,1,1,4,3
|
||||
3,1,2,2,2
|
||||
3,2,2,4,3
|
||||
2,3,1,3,1
|
||||
2,1,1,2,1
|
||||
3,4,1,3,3
|
||||
1,1,4,3,3
|
||||
2,1,2,1,1
|
||||
1,2,1,2,2
|
||||
1,2,2,1,2
|
||||
3,1,1,2,1
|
||||
1,1,1,2,1
|
||||
1,1,2,1,1
|
||||
1,2,1,1,1
|
||||
1,1,1,3,1
|
||||
1,1,3,1,1
|
||||
1,3,1,1,1
|
||||
1,1,3,3,1
|
||||
1,3,1,3,1
|
||||
1,3,3,1,1
|
||||
1,2,2,1,2
|
||||
1,2,1,2,2
|
||||
1,1,2,2,2
|
||||
1,2,2,3,2
|
||||
1,2,3,2,2
|
||||
1,3,2,2,2
|
||||
1,2,3,3,2
|
||||
1,3,2,3,2
|
||||
1,3,3,2,2
|
||||
1,1,3,2,1
|
||||
1,3,2,1,2
|
||||
1,2,1,3,1
|
||||
1,2,3,1,2
|
||||
1,1,2,3,1
|
||||
1,3,1,2,2
|
||||
1,1,1,1,1
|
||||
1,2,2,2,2
|
||||
1,3,3,3,1
|
||||
1,4,4,4,3
|
225
benchmark/tests/datasets/iris.arff
Executable file
225
benchmark/tests/datasets/iris.arff
Executable file
@@ -0,0 +1,225 @@
|
||||
% 1. Title: Iris Plants Database
|
||||
%
|
||||
% 2. Sources:
|
||||
% (a) Creator: R.A. Fisher
|
||||
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
|
||||
% (c) Date: July, 1988
|
||||
%
|
||||
% 3. Past Usage:
|
||||
% - Publications: too many to mention!!! Here are a few.
|
||||
% 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
|
||||
% Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
|
||||
% to Mathematical Statistics" (John Wiley, NY, 1950).
|
||||
% 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
|
||||
% (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
|
||||
% 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
|
||||
% Structure and Classification Rule for Recognition in Partially Exposed
|
||||
% Environments". IEEE Transactions on Pattern Analysis and Machine
|
||||
% Intelligence, Vol. PAMI-2, No. 1, 67-71.
|
||||
% -- Results:
|
||||
% -- very low misclassification rates (0% for the setosa class)
|
||||
% 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
|
||||
% Transactions on Information Theory, May 1972, 431-433.
|
||||
% -- Results:
|
||||
% -- very low misclassification rates again
|
||||
% 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
|
||||
% conceptual clustering system finds 3 classes in the data.
|
||||
%
|
||||
% 4. Relevant Information:
|
||||
% --- This is perhaps the best known database to be found in the pattern
|
||||
% recognition literature. Fisher's paper is a classic in the field
|
||||
% and is referenced frequently to this day. (See Duda & Hart, for
|
||||
% example.) The data set contains 3 classes of 50 instances each,
|
||||
% where each class refers to a type of iris plant. One class is
|
||||
% linearly separable from the other 2; the latter are NOT linearly
|
||||
% separable from each other.
|
||||
% --- Predicted attribute: class of iris plant.
|
||||
% --- This is an exceedingly simple domain.
|
||||
%
|
||||
% 5. Number of Instances: 150 (50 in each of three classes)
|
||||
%
|
||||
% 6. Number of Attributes: 4 numeric, predictive attributes and the class
|
||||
%
|
||||
% 7. Attribute Information:
|
||||
% 1. sepal length in cm
|
||||
% 2. sepal width in cm
|
||||
% 3. petal length in cm
|
||||
% 4. petal width in cm
|
||||
% 5. class:
|
||||
% -- Iris Setosa
|
||||
% -- Iris Versicolour
|
||||
% -- Iris Virginica
|
||||
%
|
||||
% 8. Missing Attribute Values: None
|
||||
%
|
||||
% Summary Statistics:
|
||||
% Min Max Mean SD Class Correlation
|
||||
% sepal length: 4.3 7.9 5.84 0.83 0.7826
|
||||
% sepal width: 2.0 4.4 3.05 0.43 -0.4194
|
||||
% petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
|
||||
% petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
|
||||
%
|
||||
% 9. Class Distribution: 33.3% for each of 3 classes.
|
||||
|
||||
@RELATION iris
|
||||
|
||||
@ATTRIBUTE sepallength REAL
|
||||
@ATTRIBUTE sepalwidth REAL
|
||||
@ATTRIBUTE petallength REAL
|
||||
@ATTRIBUTE petalwidth REAL
|
||||
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
|
||||
|
||||
@DATA
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3.0,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5.0,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5.0,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3.0,1.4,0.1,Iris-setosa
|
||||
4.3,3.0,1.1,0.1,Iris-setosa
|
||||
5.8,4.0,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1.0,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5.0,3.0,1.6,0.2,Iris-setosa
|
||||
5.0,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.0,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3.0,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5.0,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5.0,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3.0,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5.0,3.3,1.4,0.2,Iris-setosa
|
||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4.0,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1.0,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5.0,2.0,3.5,1.0,Iris-versicolor
|
||||
5.9,3.0,4.2,1.5,Iris-versicolor
|
||||
6.0,2.2,4.0,1.0,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3.0,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1.0,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4.0,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3.0,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3.0,5.0,1.7,Iris-versicolor
|
||||
6.0,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1.0,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1.0,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6.0,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3.0,4.5,1.5,Iris-versicolor
|
||||
6.0,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3.0,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4.0,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3.0,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4.0,1.2,Iris-versicolor
|
||||
5.0,2.3,3.3,1.0,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3.0,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3.0,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6.0,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3.0,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3.0,5.8,2.2,Iris-virginica
|
||||
7.6,3.0,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2.0,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3.0,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5.0,2.0,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3.0,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6.0,2.2,5.0,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2.0,Iris-virginica
|
||||
7.7,2.8,6.7,2.0,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6.0,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3.0,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3.0,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2.0,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3.0,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6.0,3.0,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3.0,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5.0,1.9,Iris-virginica
|
||||
6.5,3.0,5.2,2.0,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3.0,5.1,1.8,Iris-virginica
|
||||
%
|
||||
%
|
||||
%
|
302
benchmark/tests/datasets/wine.arff
Executable file
302
benchmark/tests/datasets/wine.arff
Executable file
@@ -0,0 +1,302 @@
|
||||
% 1. Title of Database: Wine recognition data
|
||||
% Updated Sept 21, 1998 by C.Blake : Added attribute information
|
||||
%
|
||||
% 2. Sources:
|
||||
% (a) Forina, M. et al, PARVUS - An Extendible Package for Data
|
||||
% Exploration, Classification and Correlation. Institute of Pharmaceutical
|
||||
% and Food Analysis and Technologies, Via Brigata Salerno,
|
||||
% 16147 Genoa, Italy.
|
||||
%
|
||||
% (b) Stefan Aeberhard, email: stefan@coral.cs.jcu.edu.au
|
||||
% (c) July 1991
|
||||
% 3. Past Usage:
|
||||
%
|
||||
% (1)
|
||||
% S. Aeberhard, D. Coomans and O. de Vel,
|
||||
% Comparison of Classifiers in High Dimensional Settings,
|
||||
% Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of
|
||||
% Mathematics and Statistics, James Cook University of North Queensland.
|
||||
% (Also submitted to Technometrics).
|
||||
%
|
||||
% The data was used with many others for comparing various
|
||||
% classifiers. The classes are separable, though only RDA
|
||||
% has achieved 100% correct classification.
|
||||
% (RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data))
|
||||
% (All results using the leave-one-out technique)
|
||||
%
|
||||
% In a classification context, this is a well posed problem
|
||||
% with "well behaved" class structures. A good data set
|
||||
% for first testing of a new classifier, but not very
|
||||
% challenging.
|
||||
%
|
||||
% (2)
|
||||
% S. Aeberhard, D. Coomans and O. de Vel,
|
||||
% "THE CLASSIFICATION PERFORMANCE OF RDA"
|
||||
% Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of
|
||||
% Mathematics and Statistics, James Cook University of North Queensland.
|
||||
% (Also submitted to Journal of Chemometrics).
|
||||
%
|
||||
% Here, the data was used to illustrate the superior performance of
|
||||
% the use of a new appreciation function with RDA.
|
||||
%
|
||||
% 4. Relevant Information:
|
||||
%
|
||||
% -- These data are the results of a chemical analysis of
|
||||
% wines grown in the same region in Italy but derived from three
|
||||
% different cultivars.
|
||||
% The analysis determined the quantities of 13 constituents
|
||||
% found in each of the three types of wines.
|
||||
%
|
||||
% -- I think that the initial data set had around 30 variables, but
|
||||
% for some reason I only have the 13 dimensional version.
|
||||
% I had a list of what the 30 or so variables were, but a.)
|
||||
% I lost it, and b.), I would not know which 13 variables
|
||||
% are included in the set.
|
||||
%
|
||||
% -- The attributes are (dontated by Riccardo Leardi,
|
||||
% riclea@anchem.unige.it )
|
||||
% 1) Alcohol
|
||||
% 2) Malic acid
|
||||
% 3) Ash
|
||||
% 4) Alcalinity of ash
|
||||
% 5) Magnesium
|
||||
% 6) Total phenols
|
||||
% 7) Flavanoids
|
||||
% 8) Nonflavanoid phenols
|
||||
% 9) Proanthocyanins
|
||||
% 10)Color intensity
|
||||
% 11)Hue
|
||||
% 12)OD280/OD315 of diluted wines
|
||||
% 13)Proline
|
||||
%
|
||||
% 5. Number of Instances
|
||||
%
|
||||
% class 1 59
|
||||
% class 2 71
|
||||
% class 3 48
|
||||
%
|
||||
% 6. Number of Attributes
|
||||
%
|
||||
% 13
|
||||
%
|
||||
% 7. For Each Attribute:
|
||||
%
|
||||
% All attributes are continuous
|
||||
%
|
||||
% No statistics available, but suggest to standardise
|
||||
% variables for certain uses (e.g. for us with classifiers
|
||||
% which are NOT scale invariant)
|
||||
%
|
||||
% NOTE: 1st attribute is class identifier (1-3)
|
||||
%
|
||||
% 8. Missing Attribute Values:
|
||||
%
|
||||
% None
|
||||
%
|
||||
% 9. Class Distribution: number of instances per class
|
||||
%
|
||||
% class 1 59
|
||||
% class 2 71
|
||||
% class 3 48
|
||||
%
|
||||
% Information about the dataset
|
||||
% CLASSTYPE: nominal
|
||||
% CLASSINDEX: first
|
||||
%
|
||||
|
||||
@relation wine
|
||||
|
||||
@attribute class {1,2,3}
|
||||
@attribute Alcohol REAL
|
||||
@attribute Malic_acid REAL
|
||||
@attribute Ash REAL
|
||||
@attribute Alcalinity_of_ash REAL
|
||||
@attribute Magnesium INTEGER
|
||||
@attribute Total_phenols REAL
|
||||
@attribute Flavanoids REAL
|
||||
@attribute Nonflavanoid_phenols REAL
|
||||
@attribute Proanthocyanins REAL
|
||||
@attribute Color_intensity REAL
|
||||
@attribute Hue REAL
|
||||
@attribute OD280/OD315_of_diluted_wines REAL
|
||||
@attribute Proline INTEGER
|
||||
|
||||
@data
|
||||
1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
|
||||
1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
|
||||
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
|
||||
1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
|
||||
1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735
|
||||
1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450
|
||||
1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290
|
||||
1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295
|
||||
1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045
|
||||
1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045
|
||||
1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510
|
||||
1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280
|
||||
1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320
|
||||
1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150
|
||||
1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547
|
||||
1,13.63,1.81,2.7,17.2,112,2.85,2.91,.3,1.46,7.3,1.28,2.88,1310
|
||||
1,14.3,1.92,2.72,20,120,2.8,3.14,.33,1.97,6.2,1.07,2.65,1280
|
||||
1,13.83,1.57,2.62,20,115,2.95,3.4,.4,1.72,6.6,1.13,2.57,1130
|
||||
1,14.19,1.59,2.48,16.5,108,3.3,3.93,.32,1.86,8.7,1.23,2.82,1680
|
||||
1,13.64,3.1,2.56,15.2,116,2.7,3.03,.17,1.66,5.1,.96,3.36,845
|
||||
1,14.06,1.63,2.28,16,126,3,3.17,.24,2.1,5.65,1.09,3.71,780
|
||||
1,12.93,3.8,2.65,18.6,102,2.41,2.41,.25,1.98,4.5,1.03,3.52,770
|
||||
1,13.71,1.86,2.36,16.6,101,2.61,2.88,.27,1.69,3.8,1.11,4,1035
|
||||
1,12.85,1.6,2.52,17.8,95,2.48,2.37,.26,1.46,3.93,1.09,3.63,1015
|
||||
1,13.5,1.81,2.61,20,96,2.53,2.61,.28,1.66,3.52,1.12,3.82,845
|
||||
1,13.05,2.05,3.22,25,124,2.63,2.68,.47,1.92,3.58,1.13,3.2,830
|
||||
1,13.39,1.77,2.62,16.1,93,2.85,2.94,.34,1.45,4.8,.92,3.22,1195
|
||||
1,13.3,1.72,2.14,17,94,2.4,2.19,.27,1.35,3.95,1.02,2.77,1285
|
||||
1,13.87,1.9,2.8,19.4,107,2.95,2.97,.37,1.76,4.5,1.25,3.4,915
|
||||
1,14.02,1.68,2.21,16,96,2.65,2.33,.26,1.98,4.7,1.04,3.59,1035
|
||||
1,13.73,1.5,2.7,22.5,101,3,3.25,.29,2.38,5.7,1.19,2.71,1285
|
||||
1,13.58,1.66,2.36,19.1,106,2.86,3.19,.22,1.95,6.9,1.09,2.88,1515
|
||||
1,13.68,1.83,2.36,17.2,104,2.42,2.69,.42,1.97,3.84,1.23,2.87,990
|
||||
1,13.76,1.53,2.7,19.5,132,2.95,2.74,.5,1.35,5.4,1.25,3,1235
|
||||
1,13.51,1.8,2.65,19,110,2.35,2.53,.29,1.54,4.2,1.1,2.87,1095
|
||||
1,13.48,1.81,2.41,20.5,100,2.7,2.98,.26,1.86,5.1,1.04,3.47,920
|
||||
1,13.28,1.64,2.84,15.5,110,2.6,2.68,.34,1.36,4.6,1.09,2.78,880
|
||||
1,13.05,1.65,2.55,18,98,2.45,2.43,.29,1.44,4.25,1.12,2.51,1105
|
||||
1,13.07,1.5,2.1,15.5,98,2.4,2.64,.28,1.37,3.7,1.18,2.69,1020
|
||||
1,14.22,3.99,2.51,13.2,128,3,3.04,.2,2.08,5.1,.89,3.53,760
|
||||
1,13.56,1.71,2.31,16.2,117,3.15,3.29,.34,2.34,6.13,.95,3.38,795
|
||||
1,13.41,3.84,2.12,18.8,90,2.45,2.68,.27,1.48,4.28,.91,3,1035
|
||||
1,13.88,1.89,2.59,15,101,3.25,3.56,.17,1.7,5.43,.88,3.56,1095
|
||||
1,13.24,3.98,2.29,17.5,103,2.64,2.63,.32,1.66,4.36,.82,3,680
|
||||
1,13.05,1.77,2.1,17,107,3,3,.28,2.03,5.04,.88,3.35,885
|
||||
1,14.21,4.04,2.44,18.9,111,2.85,2.65,.3,1.25,5.24,.87,3.33,1080
|
||||
1,14.38,3.59,2.28,16,102,3.25,3.17,.27,2.19,4.9,1.04,3.44,1065
|
||||
1,13.9,1.68,2.12,16,101,3.1,3.39,.21,2.14,6.1,.91,3.33,985
|
||||
1,14.1,2.02,2.4,18.8,103,2.75,2.92,.32,2.38,6.2,1.07,2.75,1060
|
||||
1,13.94,1.73,2.27,17.4,108,2.88,3.54,.32,2.08,8.90,1.12,3.1,1260
|
||||
1,13.05,1.73,2.04,12.4,92,2.72,3.27,.17,2.91,7.2,1.12,2.91,1150
|
||||
1,13.83,1.65,2.6,17.2,94,2.45,2.99,.22,2.29,5.6,1.24,3.37,1265
|
||||
1,13.82,1.75,2.42,14,111,3.88,3.74,.32,1.87,7.05,1.01,3.26,1190
|
||||
1,13.77,1.9,2.68,17.1,115,3,2.79,.39,1.68,6.3,1.13,2.93,1375
|
||||
1,13.74,1.67,2.25,16.4,118,2.6,2.9,.21,1.62,5.85,.92,3.2,1060
|
||||
1,13.56,1.73,2.46,20.5,116,2.96,2.78,.2,2.45,6.25,.98,3.03,1120
|
||||
1,14.22,1.7,2.3,16.3,118,3.2,3,.26,2.03,6.38,.94,3.31,970
|
||||
1,13.29,1.97,2.68,16.8,102,3,3.23,.31,1.66,6,1.07,2.84,1270
|
||||
1,13.72,1.43,2.5,16.7,108,3.4,3.67,.19,2.04,6.8,.89,2.87,1285
|
||||
2,12.37,.94,1.36,10.6,88,1.98,.57,.28,.42,1.95,1.05,1.82,520
|
||||
2,12.33,1.1,2.28,16,101,2.05,1.09,.63,.41,3.27,1.25,1.67,680
|
||||
2,12.64,1.36,2.02,16.8,100,2.02,1.41,.53,.62,5.75,.98,1.59,450
|
||||
2,13.67,1.25,1.92,18,94,2.1,1.79,.32,.73,3.8,1.23,2.46,630
|
||||
2,12.37,1.13,2.16,19,87,3.5,3.1,.19,1.87,4.45,1.22,2.87,420
|
||||
2,12.17,1.45,2.53,19,104,1.89,1.75,.45,1.03,2.95,1.45,2.23,355
|
||||
2,12.37,1.21,2.56,18.1,98,2.42,2.65,.37,2.08,4.6,1.19,2.3,678
|
||||
2,13.11,1.01,1.7,15,78,2.98,3.18,.26,2.28,5.3,1.12,3.18,502
|
||||
2,12.37,1.17,1.92,19.6,78,2.11,2,.27,1.04,4.68,1.12,3.48,510
|
||||
2,13.34,.94,2.36,17,110,2.53,1.3,.55,.42,3.17,1.02,1.93,750
|
||||
2,12.21,1.19,1.75,16.8,151,1.85,1.28,.14,2.5,2.85,1.28,3.07,718
|
||||
2,12.29,1.61,2.21,20.4,103,1.1,1.02,.37,1.46,3.05,.906,1.82,870
|
||||
2,13.86,1.51,2.67,25,86,2.95,2.86,.21,1.87,3.38,1.36,3.16,410
|
||||
2,13.49,1.66,2.24,24,87,1.88,1.84,.27,1.03,3.74,.98,2.78,472
|
||||
2,12.99,1.67,2.6,30,139,3.3,2.89,.21,1.96,3.35,1.31,3.5,985
|
||||
2,11.96,1.09,2.3,21,101,3.38,2.14,.13,1.65,3.21,.99,3.13,886
|
||||
2,11.66,1.88,1.92,16,97,1.61,1.57,.34,1.15,3.8,1.23,2.14,428
|
||||
2,13.03,.9,1.71,16,86,1.95,2.03,.24,1.46,4.6,1.19,2.48,392
|
||||
2,11.84,2.89,2.23,18,112,1.72,1.32,.43,.95,2.65,.96,2.52,500
|
||||
2,12.33,.99,1.95,14.8,136,1.9,1.85,.35,2.76,3.4,1.06,2.31,750
|
||||
2,12.7,3.87,2.4,23,101,2.83,2.55,.43,1.95,2.57,1.19,3.13,463
|
||||
2,12,.92,2,19,86,2.42,2.26,.3,1.43,2.5,1.38,3.12,278
|
||||
2,12.72,1.81,2.2,18.8,86,2.2,2.53,.26,1.77,3.9,1.16,3.14,714
|
||||
2,12.08,1.13,2.51,24,78,2,1.58,.4,1.4,2.2,1.31,2.72,630
|
||||
2,13.05,3.86,2.32,22.5,85,1.65,1.59,.61,1.62,4.8,.84,2.01,515
|
||||
2,11.84,.89,2.58,18,94,2.2,2.21,.22,2.35,3.05,.79,3.08,520
|
||||
2,12.67,.98,2.24,18,99,2.2,1.94,.3,1.46,2.62,1.23,3.16,450
|
||||
2,12.16,1.61,2.31,22.8,90,1.78,1.69,.43,1.56,2.45,1.33,2.26,495
|
||||
2,11.65,1.67,2.62,26,88,1.92,1.61,.4,1.34,2.6,1.36,3.21,562
|
||||
2,11.64,2.06,2.46,21.6,84,1.95,1.69,.48,1.35,2.8,1,2.75,680
|
||||
2,12.08,1.33,2.3,23.6,70,2.2,1.59,.42,1.38,1.74,1.07,3.21,625
|
||||
2,12.08,1.83,2.32,18.5,81,1.6,1.5,.52,1.64,2.4,1.08,2.27,480
|
||||
2,12,1.51,2.42,22,86,1.45,1.25,.5,1.63,3.6,1.05,2.65,450
|
||||
2,12.69,1.53,2.26,20.7,80,1.38,1.46,.58,1.62,3.05,.96,2.06,495
|
||||
2,12.29,2.83,2.22,18,88,2.45,2.25,.25,1.99,2.15,1.15,3.3,290
|
||||
2,11.62,1.99,2.28,18,98,3.02,2.26,.17,1.35,3.25,1.16,2.96,345
|
||||
2,12.47,1.52,2.2,19,162,2.5,2.27,.32,3.28,2.6,1.16,2.63,937
|
||||
2,11.81,2.12,2.74,21.5,134,1.6,.99,.14,1.56,2.5,.95,2.26,625
|
||||
2,12.29,1.41,1.98,16,85,2.55,2.5,.29,1.77,2.9,1.23,2.74,428
|
||||
2,12.37,1.07,2.1,18.5,88,3.52,3.75,.24,1.95,4.5,1.04,2.77,660
|
||||
2,12.29,3.17,2.21,18,88,2.85,2.99,.45,2.81,2.3,1.42,2.83,406
|
||||
2,12.08,2.08,1.7,17.5,97,2.23,2.17,.26,1.4,3.3,1.27,2.96,710
|
||||
2,12.6,1.34,1.9,18.5,88,1.45,1.36,.29,1.35,2.45,1.04,2.77,562
|
||||
2,12.34,2.45,2.46,21,98,2.56,2.11,.34,1.31,2.8,.8,3.38,438
|
||||
2,11.82,1.72,1.88,19.5,86,2.5,1.64,.37,1.42,2.06,.94,2.44,415
|
||||
2,12.51,1.73,1.98,20.5,85,2.2,1.92,.32,1.48,2.94,1.04,3.57,672
|
||||
2,12.42,2.55,2.27,22,90,1.68,1.84,.66,1.42,2.7,.86,3.3,315
|
||||
2,12.25,1.73,2.12,19,80,1.65,2.03,.37,1.63,3.4,1,3.17,510
|
||||
2,12.72,1.75,2.28,22.5,84,1.38,1.76,.48,1.63,3.3,.88,2.42,488
|
||||
2,12.22,1.29,1.94,19,92,2.36,2.04,.39,2.08,2.7,.86,3.02,312
|
||||
2,11.61,1.35,2.7,20,94,2.74,2.92,.29,2.49,2.65,.96,3.26,680
|
||||
2,11.46,3.74,1.82,19.5,107,3.18,2.58,.24,3.58,2.9,.75,2.81,562
|
||||
2,12.52,2.43,2.17,21,88,2.55,2.27,.26,1.22,2,.9,2.78,325
|
||||
2,11.76,2.68,2.92,20,103,1.75,2.03,.6,1.05,3.8,1.23,2.5,607
|
||||
2,11.41,.74,2.5,21,88,2.48,2.01,.42,1.44,3.08,1.1,2.31,434
|
||||
2,12.08,1.39,2.5,22.5,84,2.56,2.29,.43,1.04,2.9,.93,3.19,385
|
||||
2,11.03,1.51,2.2,21.5,85,2.46,2.17,.52,2.01,1.9,1.71,2.87,407
|
||||
2,11.82,1.47,1.99,20.8,86,1.98,1.6,.3,1.53,1.95,.95,3.33,495
|
||||
2,12.42,1.61,2.19,22.5,108,2,2.09,.34,1.61,2.06,1.06,2.96,345
|
||||
2,12.77,3.43,1.98,16,80,1.63,1.25,.43,.83,3.4,.7,2.12,372
|
||||
2,12,3.43,2,19,87,2,1.64,.37,1.87,1.28,.93,3.05,564
|
||||
2,11.45,2.4,2.42,20,96,2.9,2.79,.32,1.83,3.25,.8,3.39,625
|
||||
2,11.56,2.05,3.23,28.5,119,3.18,5.08,.47,1.87,6,.93,3.69,465
|
||||
2,12.42,4.43,2.73,26.5,102,2.2,2.13,.43,1.71,2.08,.92,3.12,365
|
||||
2,13.05,5.8,2.13,21.5,86,2.62,2.65,.3,2.01,2.6,.73,3.1,380
|
||||
2,11.87,4.31,2.39,21,82,2.86,3.03,.21,2.91,2.8,.75,3.64,380
|
||||
2,12.07,2.16,2.17,21,85,2.6,2.65,.37,1.35,2.76,.86,3.28,378
|
||||
2,12.43,1.53,2.29,21.5,86,2.74,3.15,.39,1.77,3.94,.69,2.84,352
|
||||
2,11.79,2.13,2.78,28.5,92,2.13,2.24,.58,1.76,3,.97,2.44,466
|
||||
2,12.37,1.63,2.3,24.5,88,2.22,2.45,.4,1.9,2.12,.89,2.78,342
|
||||
2,12.04,4.3,2.38,22,80,2.1,1.75,.42,1.35,2.6,.79,2.57,580
|
||||
3,12.86,1.35,2.32,18,122,1.51,1.25,.21,.94,4.1,.76,1.29,630
|
||||
3,12.88,2.99,2.4,20,104,1.3,1.22,.24,.83,5.4,.74,1.42,530
|
||||
3,12.81,2.31,2.4,24,98,1.15,1.09,.27,.83,5.7,.66,1.36,560
|
||||
3,12.7,3.55,2.36,21.5,106,1.7,1.2,.17,.84,5,.78,1.29,600
|
||||
3,12.51,1.24,2.25,17.5,85,2,.58,.6,1.25,5.45,.75,1.51,650
|
||||
3,12.6,2.46,2.2,18.5,94,1.62,.66,.63,.94,7.1,.73,1.58,695
|
||||
3,12.25,4.72,2.54,21,89,1.38,.47,.53,.8,3.85,.75,1.27,720
|
||||
3,12.53,5.51,2.64,25,96,1.79,.6,.63,1.1,5,.82,1.69,515
|
||||
3,13.49,3.59,2.19,19.5,88,1.62,.48,.58,.88,5.7,.81,1.82,580
|
||||
3,12.84,2.96,2.61,24,101,2.32,.6,.53,.81,4.92,.89,2.15,590
|
||||
3,12.93,2.81,2.7,21,96,1.54,.5,.53,.75,4.6,.77,2.31,600
|
||||
3,13.36,2.56,2.35,20,89,1.4,.5,.37,.64,5.6,.7,2.47,780
|
||||
3,13.52,3.17,2.72,23.5,97,1.55,.52,.5,.55,4.35,.89,2.06,520
|
||||
3,13.62,4.95,2.35,20,92,2,.8,.47,1.02,4.4,.91,2.05,550
|
||||
3,12.25,3.88,2.2,18.5,112,1.38,.78,.29,1.14,8.21,.65,2,855
|
||||
3,13.16,3.57,2.15,21,102,1.5,.55,.43,1.3,4,.6,1.68,830
|
||||
3,13.88,5.04,2.23,20,80,.98,.34,.4,.68,4.9,.58,1.33,415
|
||||
3,12.87,4.61,2.48,21.5,86,1.7,.65,.47,.86,7.65,.54,1.86,625
|
||||
3,13.32,3.24,2.38,21.5,92,1.93,.76,.45,1.25,8.42,.55,1.62,650
|
||||
3,13.08,3.9,2.36,21.5,113,1.41,1.39,.34,1.14,9.40,.57,1.33,550
|
||||
3,13.5,3.12,2.62,24,123,1.4,1.57,.22,1.25,8.60,.59,1.3,500
|
||||
3,12.79,2.67,2.48,22,112,1.48,1.36,.24,1.26,10.8,.48,1.47,480
|
||||
3,13.11,1.9,2.75,25.5,116,2.2,1.28,.26,1.56,7.1,.61,1.33,425
|
||||
3,13.23,3.3,2.28,18.5,98,1.8,.83,.61,1.87,10.52,.56,1.51,675
|
||||
3,12.58,1.29,2.1,20,103,1.48,.58,.53,1.4,7.6,.58,1.55,640
|
||||
3,13.17,5.19,2.32,22,93,1.74,.63,.61,1.55,7.9,.6,1.48,725
|
||||
3,13.84,4.12,2.38,19.5,89,1.8,.83,.48,1.56,9.01,.57,1.64,480
|
||||
3,12.45,3.03,2.64,27,97,1.9,.58,.63,1.14,7.5,.67,1.73,880
|
||||
3,14.34,1.68,2.7,25,98,2.8,1.31,.53,2.7,13,.57,1.96,660
|
||||
3,13.48,1.67,2.64,22.5,89,2.6,1.1,.52,2.29,11.75,.57,1.78,620
|
||||
3,12.36,3.83,2.38,21,88,2.3,.92,.5,1.04,7.65,.56,1.58,520
|
||||
3,13.69,3.26,2.54,20,107,1.83,.56,.5,.8,5.88,.96,1.82,680
|
||||
3,12.85,3.27,2.58,22,106,1.65,.6,.6,.96,5.58,.87,2.11,570
|
||||
3,12.96,3.45,2.35,18.5,106,1.39,.7,.4,.94,5.28,.68,1.75,675
|
||||
3,13.78,2.76,2.3,22,90,1.35,.68,.41,1.03,9.58,.7,1.68,615
|
||||
3,13.73,4.36,2.26,22.5,88,1.28,.47,.52,1.15,6.62,.78,1.75,520
|
||||
3,13.45,3.7,2.6,23,111,1.7,.92,.43,1.46,10.68,.85,1.56,695
|
||||
3,12.82,3.37,2.3,19.5,88,1.48,.66,.4,.97,10.26,.72,1.75,685
|
||||
3,13.58,2.58,2.69,24.5,105,1.55,.84,.39,1.54,8.66,.74,1.8,750
|
||||
3,13.4,4.6,2.86,25,112,1.98,.96,.27,1.11,8.5,.67,1.92,630
|
||||
3,12.2,3.03,2.32,19,96,1.25,.49,.4,.73,5.5,.66,1.83,510
|
||||
3,12.77,2.39,2.28,19.5,86,1.39,.51,.48,.64,9.899999,.57,1.63,470
|
||||
3,14.16,2.51,2.48,20,91,1.68,.7,.44,1.24,9.7,.62,1.71,660
|
||||
3,13.71,5.65,2.45,20.5,95,1.68,.61,.52,1.06,7.7,.64,1.74,740
|
||||
3,13.4,3.91,2.48,23,102,1.8,.75,.43,1.41,7.3,.7,1.56,750
|
||||
3,13.27,4.28,2.26,20,120,1.59,.69,.43,1.35,10.2,.59,1.56,835
|
||||
3,13.17,2.59,2.37,20,120,1.65,.68,.53,1.46,9.3,.6,1.62,840
|
||||
3,14.13,4.1,2.74,24.5,96,2.05,.76,.56,1.35,9.2,.61,1.6,560
|
Reference in New Issue
Block a user