mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-15 23:45:54 +00:00
Add new experimentation and parameter
This commit is contained in:
@@ -160,6 +160,15 @@ class Arguments(argparse.ArgumentParser):
|
||||
"help": "Ignore nan results",
|
||||
},
|
||||
],
|
||||
"iwss": [
|
||||
("--iwss",),
|
||||
{
|
||||
"default": False,
|
||||
"action": "store_true",
|
||||
"required": False,
|
||||
"help": "Do IWSS with training set and then apply to test set",
|
||||
},
|
||||
],
|
||||
"key": [
|
||||
("-k", "--key"),
|
||||
{
|
||||
|
@@ -7,12 +7,17 @@ import time
|
||||
from datetime import datetime
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from mufs import MUFS
|
||||
from sklearn.model_selection import (
|
||||
StratifiedKFold,
|
||||
KFold,
|
||||
GridSearchCV,
|
||||
cross_validate,
|
||||
)
|
||||
from sklearn.svm import LinearSVC
|
||||
from sklearn.feature_selection import SelectFromModel
|
||||
from sklearn.preprocessing import label_binarize
|
||||
from sklearn.base import clone
|
||||
from sklearn.metrics import check_scoring, roc_auc_score
|
||||
from .Utils import Folders, Files, NO_RESULTS
|
||||
from .Datasets import Datasets
|
||||
from .Models import Models
|
||||
@@ -115,6 +120,7 @@ class Experiment:
|
||||
ignore_nan=True,
|
||||
fit_features=None,
|
||||
discretize=None,
|
||||
iwss=False,
|
||||
folds=5,
|
||||
):
|
||||
env_data = EnvData().load()
|
||||
@@ -176,6 +182,7 @@ class Experiment:
|
||||
self.random_seeds = Randomized.seeds()
|
||||
self.results = []
|
||||
self.duration = 0
|
||||
self.iwss = iwss
|
||||
self._init_experiment()
|
||||
|
||||
def get_output_file(self):
|
||||
@@ -212,52 +219,362 @@ class Experiment:
|
||||
res["state_names"] = states
|
||||
return res
|
||||
|
||||
# def _n_fold_crossval(self, name, X, y, hyperparameters):
|
||||
# if self.scores != []:
|
||||
# raise ValueError("Must init experiment before!")
|
||||
|
||||
# loop = tqdm(
|
||||
# self.random_seeds,
|
||||
# position=1,
|
||||
# leave=False,
|
||||
# disable=not self.progress_bar,
|
||||
# )
|
||||
|
||||
# for random_state in loop:
|
||||
# loop.set_description(f"Seed({random_state:4d})")
|
||||
# random.seed(random_state)
|
||||
# np.random.seed(random_state)
|
||||
|
||||
# kfold = self.stratified_class(
|
||||
# shuffle=True, random_state=random_state, n_splits=self.folds
|
||||
# )
|
||||
|
||||
# clf = self._build_classifier(random_state, hyperparameters)
|
||||
# fit_params = self._build_fit_params(name)
|
||||
# self.version = Models.get_version(self.model_name, clf)
|
||||
|
||||
# with warnings.catch_warnings():
|
||||
# warnings.filterwarnings("ignore")
|
||||
|
||||
# if self.iwss:
|
||||
# # Manual cross-validation with IWSS feature selection
|
||||
# fold_scores = []
|
||||
# fold_times = []
|
||||
# fold_estimators = []
|
||||
|
||||
# for train_idx, test_idx in kfold.split(X, y):
|
||||
# # Split data
|
||||
# X_train, X_test = X[train_idx], X[test_idx]
|
||||
# y_train, y_test = y[train_idx], y[test_idx]
|
||||
|
||||
# # Apply IWSS feature selection
|
||||
# transformer = MUFS()
|
||||
# transformer.iwss(X_train, y_train, 0.5)
|
||||
# X_train_selected = X_train[
|
||||
# :, transformer.get_results()
|
||||
# ]
|
||||
# X_test_selected = X_test[:, transformer.get_results()]
|
||||
# # print("Selected features:", transformer.get_results())
|
||||
# # print(
|
||||
# # f"Number of selected features: {X_train_selected.shape[1]}"
|
||||
# # )
|
||||
|
||||
# # Clone classifier to avoid data leakage between folds
|
||||
# clf_fold = clone(clf)
|
||||
|
||||
# # Fit the classifier
|
||||
# start_time = time.time()
|
||||
# clf_fold.fit(X_train_selected, y_train)
|
||||
# fit_time = time.time() - start_time
|
||||
|
||||
# # Score on test set
|
||||
# score_func = get_scorer(
|
||||
# self.score_name.replace("-", "_")
|
||||
# )
|
||||
# # Handle scoring based on the metric type
|
||||
# if self.score_name in [
|
||||
# "roc_auc",
|
||||
# "log_loss",
|
||||
# "roc_auc_ovr",
|
||||
# "roc_auc_ovo",
|
||||
# ]:
|
||||
# # These metrics need probabilities
|
||||
# if hasattr(clf_fold, "predict_proba"):
|
||||
# y_score = clf_fold.predict_proba(
|
||||
# X_test_selected
|
||||
# )
|
||||
|
||||
# # Handle missing classes in the fold
|
||||
# if len(unique_train_classes) < len(
|
||||
# unique_all_classes
|
||||
# ):
|
||||
# # Create a full probability matrix with zeros for missing classes
|
||||
# y_score_full = np.zeros(
|
||||
# (len(y_test), len(unique_all_classes))
|
||||
# )
|
||||
# for i, class_label in enumerate(
|
||||
# unique_train_classes
|
||||
# ):
|
||||
# class_idx = np.where(
|
||||
# unique_all_classes == class_label
|
||||
# )[0][0]
|
||||
# y_score_full[:, class_idx] = y_score[
|
||||
# :, i
|
||||
# ]
|
||||
# y_score = y_score_full
|
||||
# else:
|
||||
# # Fallback to decision_function for SVM-like models
|
||||
# y_score = clf_fold.decision_function(
|
||||
# X_test_selected
|
||||
# )
|
||||
|
||||
# test_score = score_func._score_func(
|
||||
# y_test, y_score
|
||||
# )
|
||||
# else:
|
||||
# # For metrics that use predictions (accuracy, f1, etc.)
|
||||
# test_score = score_func(
|
||||
# clf_fold, X_test_selected, y_test
|
||||
# )
|
||||
|
||||
# fold_scores.append(test_score)
|
||||
# fold_times.append(fit_time)
|
||||
# fold_estimators.append(clf_fold)
|
||||
|
||||
# # Package results to match cross_validate output format
|
||||
# res = {
|
||||
# "test_score": np.array(fold_scores),
|
||||
# "fit_time": np.array(fold_times),
|
||||
# "estimator": fold_estimators,
|
||||
# }
|
||||
# else:
|
||||
# # Original cross_validate approach
|
||||
# res = cross_validate(
|
||||
# clf,
|
||||
# X,
|
||||
# y,
|
||||
# cv=kfold,
|
||||
# fit_params=fit_params,
|
||||
# return_estimator=True,
|
||||
# scoring=self.score_name.replace("-", "_"),
|
||||
# )
|
||||
|
||||
# # Handle NaN values
|
||||
# if np.isnan(res["test_score"]).any():
|
||||
# if not self.ignore_nan:
|
||||
# print(res["test_score"])
|
||||
# raise ValueError("NaN in results")
|
||||
# results = res["test_score"][~np.isnan(res["test_score"])]
|
||||
# else:
|
||||
# results = res["test_score"]
|
||||
|
||||
# # Store results
|
||||
# self.scores.extend(results)
|
||||
# self.times.extend(res["fit_time"])
|
||||
|
||||
# for result_item in res["estimator"]:
|
||||
# nodes_item, leaves_item, depth_item = (
|
||||
# Models.get_complexity(self.model_name, result_item)
|
||||
# )
|
||||
# self.nodes.append(nodes_item)
|
||||
# self.leaves.append(leaves_item)
|
||||
# self.depths.append(depth_item)
|
||||
|
||||
# from sklearn.base import clone
|
||||
# import numpy as np
|
||||
# import time
|
||||
# import warnings
|
||||
# from tqdm import tqdm
|
||||
|
||||
def _n_fold_crossval(self, name, X, y, hyperparameters):
|
||||
if self.scores != []:
|
||||
raise ValueError("Must init experiment before!")
|
||||
|
||||
# Get all unique classes and check data
|
||||
unique_all_classes = np.sort(np.unique(y))
|
||||
n_classes = len(unique_all_classes)
|
||||
|
||||
# Check if we have enough samples per class for stratified k-fold
|
||||
min_samples_per_class = np.min(np.bincount(y))
|
||||
if min_samples_per_class < self.folds:
|
||||
warnings.warn(
|
||||
f"Class imbalance detected: minimum class has {min_samples_per_class} samples. "
|
||||
f"Consider using fewer folds or handling imbalanced data."
|
||||
)
|
||||
|
||||
loop = tqdm(
|
||||
self.random_seeds,
|
||||
position=1,
|
||||
leave=False,
|
||||
disable=not self.progress_bar,
|
||||
)
|
||||
|
||||
for random_state in loop:
|
||||
loop.set_description(f"Seed({random_state:4d})")
|
||||
random.seed(random_state)
|
||||
np.random.seed(random_state)
|
||||
|
||||
kfold = self.stratified_class(
|
||||
shuffle=True, random_state=random_state, n_splits=self.folds
|
||||
)
|
||||
|
||||
clf = self._build_classifier(random_state, hyperparameters)
|
||||
fit_params = self._build_fit_params(name)
|
||||
self.version = Models.get_version(self.model_name, clf)
|
||||
|
||||
# Check if the classifier supports probability predictions
|
||||
scorer = check_scoring(clf, scoring="roc_auc_ovr")
|
||||
if not hasattr(clf, "predict_proba") and not hasattr(
|
||||
clf, "decision_function"
|
||||
):
|
||||
raise ValueError(
|
||||
f"Classifier {self.model_name} doesn't support probability predictions "
|
||||
"required for ROC-AUC scoring"
|
||||
)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore")
|
||||
res = cross_validate(
|
||||
clf,
|
||||
X,
|
||||
y,
|
||||
cv=kfold,
|
||||
fit_params=fit_params,
|
||||
return_estimator=True,
|
||||
scoring=self.score_name.replace("-", "_"),
|
||||
)
|
||||
if np.isnan(res["test_score"]).any():
|
||||
if not self.ignore_nan:
|
||||
print(res["test_score"])
|
||||
raise ValueError("NaN in results")
|
||||
results = res["test_score"][~np.isnan(res["test_score"])]
|
||||
else:
|
||||
results = res["test_score"]
|
||||
self.scores.extend(results)
|
||||
self.times.extend(res["fit_time"])
|
||||
for result_item in res["estimator"]:
|
||||
nodes_item, leaves_item, depth_item = Models.get_complexity(
|
||||
self.model_name, result_item
|
||||
)
|
||||
self.nodes.append(nodes_item)
|
||||
self.leaves.append(leaves_item)
|
||||
self.depths.append(depth_item)
|
||||
|
||||
fold_scores = []
|
||||
fold_times = []
|
||||
fold_estimators = []
|
||||
|
||||
for fold_idx, (train_idx, test_idx) in enumerate(
|
||||
kfold.split(X, y)
|
||||
):
|
||||
# Split data
|
||||
X_train, X_test = X[train_idx], X[test_idx]
|
||||
y_train, y_test = y[train_idx], y[test_idx]
|
||||
|
||||
# Check classes in this fold
|
||||
unique_test_classes = np.unique(y_test)
|
||||
n_test_classes = len(unique_test_classes)
|
||||
|
||||
# Skip fold if we don't have at least 2 classes in test set
|
||||
if n_test_classes < 2:
|
||||
warnings.warn(
|
||||
f"Fold {fold_idx}: Test set has only {n_test_classes} class(es). "
|
||||
f"Skipping this fold for ROC-AUC calculation."
|
||||
)
|
||||
fold_scores.append(np.nan)
|
||||
fold_times.append(np.nan)
|
||||
fold_estimators.append(None)
|
||||
continue
|
||||
|
||||
# Apply IWSS feature selection if enabled
|
||||
if self.iwss:
|
||||
# transformer = (
|
||||
# MUFS(discrete=False)
|
||||
# if "cli_rad" in name
|
||||
# else MUFS(discrete=True)
|
||||
# )
|
||||
# transformer.iwss(X_train, y_train, 0.5)
|
||||
# selected_features = transformer.get_results()
|
||||
# Apply L1-based feature selection
|
||||
# Using LinearSVC with L1 penalty
|
||||
lsvc = LinearSVC(
|
||||
C=0.1, # Regularization parameter - adjust this for more/fewer features
|
||||
penalty="l1",
|
||||
dual=False,
|
||||
max_iter=2000,
|
||||
random_state=random_state,
|
||||
)
|
||||
selector = SelectFromModel(lsvc, prefit=False)
|
||||
selector.fit(X_train, y_train)
|
||||
|
||||
# Transform the data
|
||||
X_train_selected = selector.transform(X_train)
|
||||
X_test_selected = selector.transform(X_test)
|
||||
|
||||
# Get information about selected features
|
||||
selected_features = selector.get_support(indices=True)
|
||||
n_selected = len(selected_features)
|
||||
if len(selected_features) == 0:
|
||||
warnings.warn(
|
||||
f"Fold {fold_idx}: No features selected by IWSS. Using all features."
|
||||
)
|
||||
X_train_selected = X_train
|
||||
X_test_selected = X_test
|
||||
else:
|
||||
X_train_selected = X_train[:, selected_features]
|
||||
X_test_selected = X_test[:, selected_features]
|
||||
else:
|
||||
X_train_selected = X_train
|
||||
X_test_selected = X_test
|
||||
|
||||
# Clone and fit classifier
|
||||
clf_fold = clone(clf)
|
||||
|
||||
start_time = time.time()
|
||||
clf_fold.fit(X_train_selected, y_train)
|
||||
fit_time = time.time() - start_time
|
||||
|
||||
# Get probability predictions
|
||||
y_proba = clf_fold.predict_proba(X_test_selected)
|
||||
|
||||
# Calculate ROC-AUC score
|
||||
# Handle case where test set doesn't have all classes
|
||||
if len(clf_fold.classes_) != len(unique_test_classes):
|
||||
# Map probabilities to only test classes
|
||||
test_class_indices = [
|
||||
np.where(clf_fold.classes_ == c)[0][0]
|
||||
for c in unique_test_classes
|
||||
if c in clf_fold.classes_
|
||||
]
|
||||
y_proba = y_proba[:, test_class_indices]
|
||||
|
||||
# Binarize labels for multi-class ROC-AUC
|
||||
y_test_binarized = label_binarize(
|
||||
y_test, classes=unique_test_classes
|
||||
)
|
||||
|
||||
# Calculate ROC-AUC with OVR strategy
|
||||
if n_test_classes == 2:
|
||||
# Binary classification
|
||||
test_score = roc_auc_score(y_test, y_proba[:, 1])
|
||||
else:
|
||||
# Multi-class with macro-average
|
||||
test_score = roc_auc_score(
|
||||
y_test_binarized,
|
||||
y_proba,
|
||||
multi_class="ovr",
|
||||
average="macro",
|
||||
)
|
||||
|
||||
fold_scores.append(test_score)
|
||||
fold_times.append(fit_time)
|
||||
fold_estimators.append(clf_fold)
|
||||
|
||||
# Filter out NaN scores if ignore_nan is True
|
||||
scores_array = np.array(fold_scores)
|
||||
times_array = np.array(fold_times)
|
||||
|
||||
if np.isnan(scores_array).any():
|
||||
if not self.ignore_nan:
|
||||
nan_folds = np.where(np.isnan(scores_array))[0]
|
||||
raise ValueError(
|
||||
f"NaN scores in folds {nan_folds}. "
|
||||
f"Set ignore_nan=True to skip these folds."
|
||||
)
|
||||
else:
|
||||
# Filter out NaN values
|
||||
valid_mask = ~np.isnan(scores_array)
|
||||
scores_array = scores_array[valid_mask]
|
||||
times_array = times_array[valid_mask]
|
||||
fold_estimators = [
|
||||
e
|
||||
for e, valid in zip(fold_estimators, valid_mask)
|
||||
if valid
|
||||
]
|
||||
|
||||
if len(scores_array) == 0:
|
||||
warnings.warn(
|
||||
f"All folds resulted in NaN for seed {random_state}. Skipping."
|
||||
)
|
||||
continue
|
||||
|
||||
# Store results
|
||||
self.scores.extend(scores_array)
|
||||
self.times.extend(times_array)
|
||||
|
||||
# Store complexity metrics
|
||||
for estimator in fold_estimators:
|
||||
if estimator is not None:
|
||||
nodes_item, leaves_item, depth_item = (
|
||||
Models.get_complexity(self.model_name, estimator)
|
||||
)
|
||||
self.nodes.append(nodes_item)
|
||||
self.leaves.append(leaves_item)
|
||||
self.depths.append(depth_item)
|
||||
|
||||
def _add_results(self, name, hyperparameters, samples, features, classes):
|
||||
record = {}
|
||||
|
@@ -71,6 +71,7 @@ class Models:
|
||||
algorithm="SAMME",
|
||||
random_state=random_state,
|
||||
),
|
||||
"AdaBoost": AdaBoostClassifier(random_state=random_state),
|
||||
"GBC": GradientBoostingClassifier(random_state=random_state),
|
||||
"RandomForest": RandomForestClassifier(random_state=random_state),
|
||||
"Mock": MockModel(random_state=random_state),
|
||||
@@ -99,13 +100,13 @@ class Models:
|
||||
nodes = 0
|
||||
leaves = result.get_n_leaves()
|
||||
depth = 0
|
||||
elif name.startswith("Bagging") or name.startswith("AdaBoost"):
|
||||
elif name.startswith("Bagging") or name == "AdaBoostStree":
|
||||
nodes, leaves = list(
|
||||
zip(*[x.nodes_leaves() for x in result.estimators_])
|
||||
)
|
||||
nodes, leaves = mean(nodes), mean(leaves)
|
||||
depth = mean([x.depth_ for x in result.estimators_])
|
||||
elif name == "RandomForest":
|
||||
elif name == "RandomForest" or name == "AdaBoost":
|
||||
leaves = mean([x.get_n_leaves() for x in result.estimators_])
|
||||
depth = mean([x.get_depth() for x in result.estimators_])
|
||||
nodes = mean([x.tree_.node_count for x in result.estimators_])
|
||||
|
@@ -14,7 +14,7 @@ def main(args_test=None):
|
||||
arguments.xset("stratified").xset("score").xset("model", mandatory=True)
|
||||
arguments.xset("n_folds").xset("platform").xset("quiet").xset("title")
|
||||
arguments.xset("report").xset("ignore_nan").xset("discretize")
|
||||
arguments.xset("fit_features")
|
||||
arguments.xset("fit_features").xset("iwss")
|
||||
arguments.add_exclusive(
|
||||
["grid_paramfile", "best_paramfile", "hyperparameters"]
|
||||
)
|
||||
@@ -43,6 +43,7 @@ def main(args_test=None):
|
||||
folds=args.n_folds,
|
||||
fit_features=args.fit_features,
|
||||
discretize=args.discretize,
|
||||
iwss=args.iwss,
|
||||
)
|
||||
job.do_experiment()
|
||||
except ValueError as e:
|
||||
|
Reference in New Issue
Block a user