Add KDBNew and TANNew tests

This commit is contained in:
2023-03-23 14:13:01 +01:00
parent 2ffc06b232
commit ea8c5b805e
9 changed files with 298 additions and 10 deletions

View File

@@ -17,4 +17,5 @@ __all__ = [
"KDB",
"AODE",
"KDBNew",
"AODENew",
]

View File

@@ -460,6 +460,21 @@ class AODE(BayesBase, BaseEnsemble):
class TANNew(TAN):
def __init__(
self,
show_progress=False,
random_state=None,
discretizer_depth=1e6,
discretizer_length=3,
discretizer_cuts=0,
):
self.discretizer_depth = discretizer_depth
self.discretizer_length = discretizer_length
self.discretizer_cuts = discretizer_cuts
super().__init__(
show_progress=show_progress, random_state=random_state
)
def fit(self, X, y, **kwargs):
self.estimator = Proposal(self)
return self.estimator.fit(X, y, **kwargs)
@@ -470,6 +485,22 @@ class TANNew(TAN):
class KDBNew(KDB):
def __init__(
self,
k=2,
show_progress=False,
random_state=None,
discretizer_depth=1e6,
discretizer_length=3,
discretizer_cuts=0,
):
self.discretizer_depth = discretizer_depth
self.discretizer_length = discretizer_length
self.discretizer_cuts = discretizer_cuts
super().__init__(
k=k, show_progress=show_progress, random_state=random_state
)
def fit(self, X, y, **kwargs):
self.estimator = Proposal(self)
return self.estimator.fit(X, y, **kwargs)
@@ -478,14 +509,25 @@ class KDBNew(KDB):
return self.estimator.predict(X)
class AODENew(AODE):
pass
class Proposal:
def __init__(self, estimator):
self.estimator = estimator
self.class_type = estimator.__class__
def fit(self, X, y, **kwargs):
# Check parameters
super(self.class_type, self.estimator)._check_params(X, y, kwargs)
# Discretize train data
self.discretizer = FImdlp(n_jobs=1)
self.discretizer = FImdlp(
n_jobs=1,
max_depth=self.estimator.discretizer_depth,
min_length=self.estimator.discretizer_length,
max_cuts=self.estimator.discretizer_cuts,
)
self.Xd = self.discretizer.fit_transform(X, y)
kwargs = self.update_kwargs(y, kwargs)
# Build the model

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

View File

@@ -55,7 +55,6 @@ def test_KDB_nodes_edges(clf, data):
def test_KDB_states(clf, data):
assert clf.states_ == 0
clf = KDB(k=3, random_state=17)
clf.fit(*data)
assert clf.states_ == 23
assert clf.depth_ == clf.states_

View File

@@ -0,0 +1,127 @@
import pytest
import numpy as np
from sklearn.datasets import load_iris
from sklearn.preprocessing import KBinsDiscretizer
from matplotlib.testing.decorators import image_comparison
from matplotlib.testing.conftest import mpl_test_settings
from pgmpy.models import BayesianNetwork
from bayesclass.clfs import KDBNew
from .._version import __version__
@pytest.fixture
def data():
X, y = load_iris(return_X_y=True)
enc = KBinsDiscretizer(encode="ordinal")
return enc.fit_transform(X), y
@pytest.fixture
def clf():
return KDBNew(k=3)
def test_KDBNew_default_hyperparameters(data, clf):
# Test default values of hyperparameters
assert not clf.show_progress
assert clf.random_state is None
assert clf.theta == 0.03
clf = KDBNew(show_progress=True, random_state=17, k=3)
assert clf.show_progress
assert clf.random_state == 17
assert clf.k == 3
clf.fit(*data)
assert clf.class_name_ == "class"
assert clf.feature_names_in_ == [
"feature_0",
"feature_1",
"feature_2",
"feature_3",
]
def test_KDBNew_version(clf):
"""Check KDBNew version."""
assert __version__ == clf.version()
def test_KDBNew_nodes_edges(clf, data):
assert clf.nodes_edges() == (0, 0)
clf.fit(*data)
assert clf.nodes_leaves() == (5, 10)
def test_KDBNew_states(clf, data):
assert clf.states_ == 0
clf.fit(*data)
assert clf.states_ == 23
assert clf.depth_ == clf.states_
def test_KDBNew_classifier(data, clf):
clf.fit(*data)
attribs = ["classes_", "X_", "y_", "feature_names_in_", "class_name_"]
for attr in attribs:
assert hasattr(clf, attr)
X = data[0]
y = data[1]
y_pred = clf.predict(X)
assert y_pred.shape == (X.shape[0],)
assert sum(y == y_pred) == 148
@image_comparison(
baseline_images=["line_dashes_KDBNew"],
remove_text=True,
extensions=["png"],
)
def test_KDBNew_plot(data, clf):
# mpl_test_settings will automatically clean these internal side effects
mpl_test_settings
dataset = load_iris(as_frame=True)
clf.fit(*data, features=dataset["feature_names"])
clf.plot("KDBNew Iris")
def test_KDBNew_wrong_num_features(data, clf):
with pytest.raises(
ValueError,
match="Number of features does not match the number of columns in X",
):
clf.fit(*data, features=["feature_1", "feature_2"])
def test_KDBNew_wrong_hyperparam(data, clf):
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
clf.fit(*data, wrong_param="wrong_param")
def test_KDBNew_error_size_predict(data, clf):
X, y = data
clf.fit(X, y)
with pytest.raises(ValueError):
X_diff_size = np.ones((10, X.shape[1] + 1))
clf.predict(X_diff_size)
def test_KDBNew_dont_do_cycles():
clf = KDBNew(k=4)
dag = BayesianNetwork()
clf.feature_names_in_ = [
"feature_0",
"feature_1",
"feature_2",
"feature_3",
]
nodes = list(range(4))
weights = np.ones((4, 4))
for idx in range(1, 4):
dag.add_edge(clf.feature_names_in_[0], clf.feature_names_in_[idx])
dag.add_edge(clf.feature_names_in_[1], clf.feature_names_in_[2])
dag.add_edge(clf.feature_names_in_[1], clf.feature_names_in_[3])
dag.add_edge(clf.feature_names_in_[2], clf.feature_names_in_[3])
for idx in range(4):
clf._add_m_edges(dag, idx, nodes, weights)
assert len(dag.edges()) == 6

View File

@@ -19,16 +19,16 @@ def data():
@pytest.fixture
def clf():
return TAN()
return TAN(random_state=17)
def test_TAN_default_hyperparameters(data, clf):
# Test default values of hyperparameters
assert not clf.show_progress
assert clf.random_state is None
clf = TAN(show_progress=True, random_state=17)
assert clf.show_progress
assert clf.random_state == 17
clf = TAN(show_progress=True)
assert clf.show_progress
assert clf.random_state is None
clf.fit(*data)
assert clf.head_ == 0
assert clf.class_name_ == "class"
@@ -47,21 +47,18 @@ def test_TAN_version(clf):
def test_TAN_nodes_edges(clf, data):
assert clf.nodes_edges() == (0, 0)
clf = TAN(random_state=17)
clf.fit(*data, head="random")
assert clf.nodes_leaves() == (5, 7)
def test_TAN_states(clf, data):
assert clf.states_ == 0
clf = TAN(random_state=17)
clf.fit(*data)
assert clf.states_ == 23
assert clf.depth_ == clf.states_
def test_TAN_random_head(data):
clf = TAN(random_state=17)
def test_TAN_random_head(clf, data):
clf.fit(*data, head="random")
assert clf.head_ == 3

View File

@@ -0,0 +1,121 @@
import pytest
import numpy as np
from sklearn.datasets import load_iris
from sklearn.preprocessing import KBinsDiscretizer
from matplotlib.testing.decorators import image_comparison
from matplotlib.testing.conftest import mpl_test_settings
from bayesclass.clfs import TANNew
from .._version import __version__
@pytest.fixture
def data():
X, y = load_iris(return_X_y=True)
enc = KBinsDiscretizer(encode="ordinal")
return enc.fit_transform(X), y
@pytest.fixture
def clf():
return TANNew(random_state=17)
def test_TANNew_default_hyperparameters(data, clf):
# Test default values of hyperparameters
assert not clf.show_progress
assert clf.random_state == 17
clf = TANNew(show_progress=True)
assert clf.show_progress
assert clf.random_state is None
clf.fit(*data)
assert clf.head_ == 0
assert clf.class_name_ == "class"
assert clf.feature_names_in_ == [
"feature_0",
"feature_1",
"feature_2",
"feature_3",
]
def test_TANNew_version(clf):
"""Check TANNew version."""
assert __version__ == clf.version()
def test_TANNew_nodes_edges(clf, data):
assert clf.nodes_edges() == (0, 0)
clf.fit(*data, head="random")
assert clf.nodes_leaves() == (5, 7)
def test_TANNew_states(clf, data):
assert clf.states_ == 0
clf.fit(*data)
assert clf.states_ == 22
assert clf.depth_ == clf.states_
def test_TANNew_random_head(clf, data):
clf.fit(*data, head="random")
assert clf.head_ == 3
def test_TANNew_classifier(data, clf):
clf.fit(*data)
attribs = [
"classes_",
"X_",
"y_",
"head_",
"feature_names_in_",
"class_name_",
]
for attr in attribs:
assert hasattr(clf, attr)
X = data[0]
y = data[1]
y_pred = clf.predict(X)
assert y_pred.shape == (X.shape[0],)
assert sum(y == y_pred) == 145
@image_comparison(
baseline_images=["line_dashes_TANNew"],
remove_text=True,
extensions=["png"],
)
def test_TANNew_plot(data, clf):
# mpl_test_settings will automatically clean these internal side effects
mpl_test_settings
dataset = load_iris(as_frame=True)
clf.fit(*data, features=dataset["feature_names"], head=0)
clf.plot("TANNew Iris head=0")
def test_TANNew_wrong_num_features(data, clf):
with pytest.raises(
ValueError,
match="Number of features does not match the number of columns in X",
):
clf.fit(*data, features=["feature_1", "feature_2"])
def test_TANNew_wrong_hyperparam(data, clf):
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
clf.fit(*data, wrong_param="wrong_param")
def test_TANNew_head_out_of_range(data, clf):
with pytest.raises(ValueError, match="Head index out of range"):
clf.fit(*data, head=4)
def test_TANNew_error_size_predict(data, clf):
X, y = data
clf.fit(X, y)
with pytest.raises(ValueError):
X_diff_size = np.ones((10, X.shape[1] + 1))
clf.predict(X_diff_size)

View File

@@ -25,6 +25,7 @@ dependencies = [
"pgmpy",
"networkx",
"matplotlib",
"fimdlp",
]
requires-python = ">=3.8"
classifiers = [