mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-17 16:45:54 +00:00
remove trace messages for first try
This commit is contained in:
@@ -475,7 +475,6 @@ class KDBNew(KDB):
|
|||||||
return self.estimator.fit(X, y, **kwargs)
|
return self.estimator.fit(X, y, **kwargs)
|
||||||
|
|
||||||
def predict(self, X):
|
def predict(self, X):
|
||||||
self.plot()
|
|
||||||
return self.estimator.predict(X)
|
return self.estimator.predict(X)
|
||||||
|
|
||||||
|
|
||||||
@@ -492,14 +491,14 @@ class Proposal:
|
|||||||
# Build the model
|
# Build the model
|
||||||
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||||
self.check_integrity("f", self.Xd)
|
self.check_integrity("f", self.Xd)
|
||||||
# # Local discretization based on the model
|
# Local discretization based on the model
|
||||||
# features = kwargs["features"]
|
features = kwargs["features"]
|
||||||
# # assign indices to feature names
|
# assign indices to feature names
|
||||||
# self.idx_features_ = dict(list(zip(features, range(len(features)))))
|
self.idx_features_ = dict(list(zip(features, range(len(features)))))
|
||||||
# upgraded, self.Xd = self._local_discretization()
|
upgraded, self.Xd = self._local_discretization()
|
||||||
# if upgraded:
|
if upgraded:
|
||||||
# kwargs = self.update_kwargs(y, kwargs)
|
kwargs = self.update_kwargs(y, kwargs)
|
||||||
# super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||||
|
|
||||||
def predict(self, X):
|
def predict(self, X):
|
||||||
self.check_integrity("p", self.discretizer.transform(X))
|
self.check_integrity("p", self.discretizer.transform(X))
|
||||||
@@ -534,14 +533,14 @@ class Proposal:
|
|||||||
"""Discretize each feature with its fathers and the class"""
|
"""Discretize each feature with its fathers and the class"""
|
||||||
res = self.Xd.copy()
|
res = self.Xd.copy()
|
||||||
upgraded = False
|
upgraded = False
|
||||||
print("-" * 80)
|
# print("-" * 80)
|
||||||
for idx, feature in enumerate(self.estimator.feature_names_in_):
|
for idx, feature in enumerate(self.estimator.feature_names_in_):
|
||||||
fathers = self.estimator.dag_.get_parents(feature)
|
fathers = self.estimator.dag_.get_parents(feature)
|
||||||
if len(fathers) > 1:
|
if len(fathers) > 1:
|
||||||
print(
|
# print(
|
||||||
"Discretizing " + feature + " with " + str(fathers),
|
# "Discretizing " + feature + " with " + str(fathers),
|
||||||
end=" ",
|
# end=" ",
|
||||||
)
|
# )
|
||||||
# First remove the class name as it will be added later
|
# First remove the class name as it will be added later
|
||||||
fathers.remove(self.estimator.class_name_)
|
fathers.remove(self.estimator.class_name_)
|
||||||
# Get the fathers indices
|
# Get the fathers indices
|
||||||
@@ -550,12 +549,12 @@ class Proposal:
|
|||||||
res[:, idx] = self.discretizer.join_fit(
|
res[:, idx] = self.discretizer.join_fit(
|
||||||
target=idx, features=features, data=self.Xd
|
target=idx, features=features, data=self.Xd
|
||||||
)
|
)
|
||||||
print(self.discretizer.y_join[:5])
|
# print(self.discretizer.y_join[:5])
|
||||||
upgraded = True
|
upgraded = True
|
||||||
return upgraded, res
|
return upgraded, res
|
||||||
|
|
||||||
def check_integrity(self, source, X):
|
def check_integrity(self, source, X):
|
||||||
print(f"Checking integrity of {source} data")
|
# print(f"Checking integrity of {source} data")
|
||||||
for i in range(X.shape[1]):
|
for i in range(X.shape[1]):
|
||||||
if not set(np.unique(X[:, i]).tolist()).issubset(
|
if not set(np.unique(X[:, i]).tolist()).issubset(
|
||||||
set(self.state_names_[self.features_[i]])
|
set(self.state_names_[self.features_[i]])
|
||||||
|
Reference in New Issue
Block a user