mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-15 15:45:54 +00:00
remove trace messages for first try
This commit is contained in:
@@ -475,7 +475,6 @@ class KDBNew(KDB):
|
||||
return self.estimator.fit(X, y, **kwargs)
|
||||
|
||||
def predict(self, X):
|
||||
self.plot()
|
||||
return self.estimator.predict(X)
|
||||
|
||||
|
||||
@@ -492,14 +491,14 @@ class Proposal:
|
||||
# Build the model
|
||||
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||
self.check_integrity("f", self.Xd)
|
||||
# # Local discretization based on the model
|
||||
# features = kwargs["features"]
|
||||
# # assign indices to feature names
|
||||
# self.idx_features_ = dict(list(zip(features, range(len(features)))))
|
||||
# upgraded, self.Xd = self._local_discretization()
|
||||
# if upgraded:
|
||||
# kwargs = self.update_kwargs(y, kwargs)
|
||||
# super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||
# Local discretization based on the model
|
||||
features = kwargs["features"]
|
||||
# assign indices to feature names
|
||||
self.idx_features_ = dict(list(zip(features, range(len(features)))))
|
||||
upgraded, self.Xd = self._local_discretization()
|
||||
if upgraded:
|
||||
kwargs = self.update_kwargs(y, kwargs)
|
||||
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||
|
||||
def predict(self, X):
|
||||
self.check_integrity("p", self.discretizer.transform(X))
|
||||
@@ -534,14 +533,14 @@ class Proposal:
|
||||
"""Discretize each feature with its fathers and the class"""
|
||||
res = self.Xd.copy()
|
||||
upgraded = False
|
||||
print("-" * 80)
|
||||
# print("-" * 80)
|
||||
for idx, feature in enumerate(self.estimator.feature_names_in_):
|
||||
fathers = self.estimator.dag_.get_parents(feature)
|
||||
if len(fathers) > 1:
|
||||
print(
|
||||
"Discretizing " + feature + " with " + str(fathers),
|
||||
end=" ",
|
||||
)
|
||||
# print(
|
||||
# "Discretizing " + feature + " with " + str(fathers),
|
||||
# end=" ",
|
||||
# )
|
||||
# First remove the class name as it will be added later
|
||||
fathers.remove(self.estimator.class_name_)
|
||||
# Get the fathers indices
|
||||
@@ -550,12 +549,12 @@ class Proposal:
|
||||
res[:, idx] = self.discretizer.join_fit(
|
||||
target=idx, features=features, data=self.Xd
|
||||
)
|
||||
print(self.discretizer.y_join[:5])
|
||||
# print(self.discretizer.y_join[:5])
|
||||
upgraded = True
|
||||
return upgraded, res
|
||||
|
||||
def check_integrity(self, source, X):
|
||||
print(f"Checking integrity of {source} data")
|
||||
# print(f"Checking integrity of {source} data")
|
||||
for i in range(X.shape[1]):
|
||||
if not set(np.unique(X[:, i]).tolist()).issubset(
|
||||
set(self.state_names_[self.features_[i]])
|
||||
|
Reference in New Issue
Block a user