mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-15 23:55:57 +00:00
First KDB implementation
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from .bayesclass import TAN
|
||||
from .bayesclass import TAN, KDB
|
||||
from ._version import __version__
|
||||
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
@@ -6,4 +6,4 @@ __copyright__ = "Copyright 2020-2023, Ricardo Montañana Gómez"
|
||||
__license__ = "MIT License"
|
||||
__author_email__ = "ricardo.montanana@alu.uclm.es"
|
||||
|
||||
__all__ = ["TAN", "__version__"]
|
||||
__all__ = ["TAN", "KDB", "__version__"]
|
||||
|
@@ -2,12 +2,12 @@
|
||||
This is a module to be used as a reference for building other modules
|
||||
"""
|
||||
import random
|
||||
from itertools import combinations
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.base import ClassifierMixin, BaseEstimator
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||
from sklearn.utils.multiclass import unique_labels
|
||||
from sklearn.feature_selection import mutual_info_classif
|
||||
import networkx as nx
|
||||
from pgmpy.estimators import TreeSearch, BayesianEstimator
|
||||
from pgmpy.models import BayesianNetwork
|
||||
@@ -16,6 +16,10 @@ from ._version import __version__
|
||||
|
||||
|
||||
class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
def __init__(self, random_state, show_progress):
|
||||
self.random_state = random_state
|
||||
self.show_progress = show_progress
|
||||
|
||||
def _more_tags(self):
|
||||
return {
|
||||
"requires_positive_X": True,
|
||||
@@ -85,34 +89,6 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
# Return the classifier
|
||||
return self
|
||||
|
||||
def _check_params_fit(self, X, y, kwargs):
|
||||
"""Check the parameters passed to fit"""
|
||||
# Check that X and y have correct shape
|
||||
X, y = check_X_y(X, y)
|
||||
# Store the classes seen during fit
|
||||
self.classes_ = unique_labels(y)
|
||||
# Default values
|
||||
self.class_name_ = "class"
|
||||
self.features_ = [f"feature_{i}" for i in range(X.shape[1])]
|
||||
self.head_ = 0
|
||||
expected_args = ["class_name", "features", "head"]
|
||||
for key, value in kwargs.items():
|
||||
if key in expected_args:
|
||||
setattr(self, f"{key}_", value)
|
||||
else:
|
||||
raise ValueError(f"Unexpected argument: {key}")
|
||||
if self.random_state is not None:
|
||||
random.seed(self.random_state)
|
||||
if self.head_ == "random":
|
||||
self.head_ = random.randint(0, len(self.features_) - 1)
|
||||
if len(self.features_) != X.shape[1]:
|
||||
raise ValueError(
|
||||
"Number of features does not match the number of columns in X"
|
||||
)
|
||||
if self.head_ is not None and self.head_ >= len(self.features_):
|
||||
raise ValueError("Head index out of range")
|
||||
return X, y
|
||||
|
||||
def predict(self, X):
|
||||
"""A reference implementation of a prediction for a classifier.
|
||||
|
||||
@@ -167,17 +143,28 @@ class BayesBase(BaseEstimator, ClassifierMixin):
|
||||
dataset = pd.DataFrame(X, columns=self.features_, dtype="int16")
|
||||
return self.model_.predict(dataset).values.ravel()
|
||||
|
||||
def plot(self, title="", node_size=800):
|
||||
nx.draw_circular(
|
||||
self.model_,
|
||||
with_labels=True,
|
||||
arrowsize=20,
|
||||
node_size=node_size,
|
||||
alpha=0.3,
|
||||
font_weight="bold",
|
||||
)
|
||||
plt.title(title)
|
||||
plt.show()
|
||||
|
||||
|
||||
class TAN(BayesBase):
|
||||
"""Tree Augmented Naive Bayes
|
||||
|
||||
Parameters
|
||||
----------
|
||||
simple_init : bool, default=True
|
||||
How to init the initial DAG. If True, only the first feature is used
|
||||
as father of the other features.
|
||||
random_state: int, default=None
|
||||
Random state for reproducibility
|
||||
show_progress: bool, default=False
|
||||
used in pgmpy to show progress bars
|
||||
|
||||
Attributes
|
||||
----------
|
||||
@@ -201,51 +188,40 @@ class TAN(BayesBase):
|
||||
The actual classifier
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, simple_init=True, show_progress=False, random_state=None
|
||||
):
|
||||
self.simple_init = simple_init
|
||||
self.show_progress = show_progress
|
||||
self.random_state = random_state
|
||||
def __init__(self, show_progress=False, random_state=None):
|
||||
super().__init__(
|
||||
show_progress=show_progress, random_state=random_state
|
||||
)
|
||||
|
||||
def __initial_edges(self):
|
||||
"""As with the naive Bayes, in a TAN structure, the class has no
|
||||
parents, while features must have the class as parent and are forced to
|
||||
have one other feature as parent too (except for one single feature,
|
||||
which has only the class as parent and is considered the root of the
|
||||
features' tree)
|
||||
Cassio P. de Campos, Giorgio Corani, Mauro Scanagatta, Marco Cuccu,
|
||||
Marco Zaffalon,
|
||||
Learning extended tree augmented naive structures,
|
||||
International Journal of Approximate Reasoning,
|
||||
|
||||
Returns
|
||||
-------
|
||||
List
|
||||
List of edges
|
||||
"""
|
||||
head = self.head_
|
||||
if self.simple_init:
|
||||
first_node = self.features_[head]
|
||||
return [
|
||||
(first_node, feature)
|
||||
for feature in self.features_
|
||||
if feature != first_node
|
||||
]
|
||||
# initialize a complete network with all edges starting from head
|
||||
reordered = [
|
||||
self.features_[idx % len(self.features_)]
|
||||
for idx in range(head, len(self.features_) + head)
|
||||
]
|
||||
return list(combinations(reordered, 2))
|
||||
def _check_params_fit(self, X, y, kwargs):
|
||||
"""Check the parameters passed to fit"""
|
||||
# Check that X and y have correct shape
|
||||
X, y = check_X_y(X, y)
|
||||
# Store the classes seen during fit
|
||||
self.classes_ = unique_labels(y)
|
||||
# Default values
|
||||
self.class_name_ = "class"
|
||||
self.features_ = [f"feature_{i}" for i in range(X.shape[1])]
|
||||
self.head_ = 0
|
||||
expected_args = ["class_name", "features", "head"]
|
||||
for key, value in kwargs.items():
|
||||
if key in expected_args:
|
||||
setattr(self, f"{key}_", value)
|
||||
else:
|
||||
raise ValueError(f"Unexpected argument: {key}")
|
||||
if self.random_state is not None:
|
||||
random.seed(self.random_state)
|
||||
if self.head_ == "random":
|
||||
self.head_ = random.randint(0, len(self.features_) - 1)
|
||||
if len(self.features_) != X.shape[1]:
|
||||
raise ValueError(
|
||||
"Number of features does not match the number of columns in X"
|
||||
)
|
||||
if self.head_ is not None and self.head_ >= len(self.features_):
|
||||
raise ValueError("Head index out of range")
|
||||
return X, y
|
||||
|
||||
def _build(self):
|
||||
# Initialize a Naive Bayes model
|
||||
net = [(self.class_name_, feature) for feature in self.features_]
|
||||
self.model_ = BayesianNetwork(net)
|
||||
# initialize a complete network with all edges
|
||||
self.model_.add_edges_from(self.__initial_edges())
|
||||
# learn graph structure
|
||||
est = TreeSearch(self.dataset_, root_node=self.features_[self.head_])
|
||||
self.dag_ = est.estimate(
|
||||
estimator_type="tan",
|
||||
@@ -263,31 +239,103 @@ class TAN(BayesBase):
|
||||
prior_type="K2",
|
||||
)
|
||||
|
||||
def plot(self, title=""):
|
||||
nx.draw_circular(
|
||||
self.model_,
|
||||
with_labels=True,
|
||||
arrowsize=30,
|
||||
node_size=800,
|
||||
alpha=0.3,
|
||||
font_weight="bold",
|
||||
)
|
||||
plt.title(title)
|
||||
plt.show()
|
||||
|
||||
|
||||
class KDBayesClassifier(BayesBase):
|
||||
def __init__(self, k=3, random_state=None):
|
||||
class KDB(BayesBase):
|
||||
def __init__(self, k, show_progress=False, random_state=None):
|
||||
self.k = k
|
||||
self.random_state = random_state
|
||||
super().__init__(
|
||||
show_progress=show_progress, random_state=random_state
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def version() -> str:
|
||||
"""Return the version of the package."""
|
||||
return __version__
|
||||
def _check_params_fit(self, X, y, kwargs):
|
||||
"""Check the parameters passed to fit"""
|
||||
# Check that X and y have correct shape
|
||||
X, y = check_X_y(X, y)
|
||||
# Store the classes seen during fit
|
||||
self.classes_ = unique_labels(y)
|
||||
# Default values
|
||||
self.class_name_ = "class"
|
||||
self.features_ = [f"feature_{i}" for i in range(X.shape[1])]
|
||||
self.head_ = 0
|
||||
expected_args = ["class_name", "features"]
|
||||
for key, value in kwargs.items():
|
||||
if key in expected_args:
|
||||
setattr(self, f"{key}_", value)
|
||||
else:
|
||||
raise ValueError(f"Unexpected argument: {key}")
|
||||
if self.random_state is not None:
|
||||
random.seed(self.random_state)
|
||||
if len(self.features_) != X.shape[1]:
|
||||
raise ValueError(
|
||||
"Number of features does not match the number of columns in X"
|
||||
)
|
||||
return X, y
|
||||
|
||||
def _build(self):
|
||||
pass
|
||||
"""
|
||||
1. For each feature Xi, compute mutual information, I(X;;C), where C is the class.
|
||||
2. Compute class conditional mutual information I(Xi;XjIC), f or each pair of features Xi and Xj, where i#j.
|
||||
3. Let the used variable list, S, be empty.
|
||||
4. Let the Bayesian network being constructed, BN, begin with a single class node, C.
|
||||
5. Repeat until S includes all domain features
|
||||
5.1. Select feature Xmax which is not in S and has the largest value I(Xmax;C).
|
||||
5.2. Add a node to BN representing Xmax.
|
||||
5.3. Add an arc from C to Xmax in BN.
|
||||
5.4. Add m =min(lSl,/c) arcs from m distinct features Xj in S with the highest value for I(Xmax;X,jC).
|
||||
5.5. Add Xmax to S.
|
||||
Compute the conditional probabilility infered by the structure of BN by using counts from DB, and output BN.
|
||||
"""
|
||||
|
||||
def add_m_edges(dag, idx, S_nodes, conditional_weights):
|
||||
n_edges = min(self.k, len(S_nodes))
|
||||
cond_w = conditional_weights.copy()
|
||||
exit_cond = False
|
||||
num = 0
|
||||
while not exit_cond:
|
||||
max_minfo = np.argmax(cond_w[idx, :])
|
||||
try:
|
||||
dag.add_edge(
|
||||
self.features_[max_minfo], self.features_[idx]
|
||||
)
|
||||
num += 1
|
||||
except ValueError:
|
||||
# Loops are not allowed
|
||||
pass
|
||||
cond_w[idx, max_minfo] = -1
|
||||
exit_cond = num == n_edges or np.all(cond_w[idx, :] <= 0)
|
||||
|
||||
# 1. get the mutual information between each feature and the class
|
||||
mutual = mutual_info_classif(self.X_, self.y_, discrete_features=True)
|
||||
# 2. symmetric matrix where each element represents I(X, Y| class_node)
|
||||
conditional_weights = TreeSearch(
|
||||
self.dataset_
|
||||
)._get_conditional_weights(
|
||||
self.dataset_, self.class_name_, show_progress=self.show_progress
|
||||
)
|
||||
# 3.
|
||||
S_nodes = []
|
||||
# 4.
|
||||
dag = BayesianNetwork()
|
||||
dag.add_node(self.class_name_) # , state_names=self.classes_)
|
||||
# 5. 5.1
|
||||
for idx in np.argsort(mutual):
|
||||
# 5.2
|
||||
feature = self.features_[idx]
|
||||
dag.add_node(feature)
|
||||
# 5.3
|
||||
dag.add_edge(self.class_name_, feature)
|
||||
# 5.4
|
||||
add_m_edges(dag, idx, S_nodes, conditional_weights)
|
||||
# 5.5
|
||||
S_nodes.append(idx)
|
||||
self.dag_ = dag
|
||||
|
||||
def _train(self):
|
||||
pass
|
||||
self.model_ = BayesianNetwork(
|
||||
self.dag_.edges(), show_progress=self.show_progress
|
||||
)
|
||||
self.model_.fit(
|
||||
self.dataset_,
|
||||
estimator=BayesianEstimator,
|
||||
prior_type="K2",
|
||||
)
|
||||
|
BIN
bayesclass/tests/baseline_images/test_KDB/line_dashes_KDB.png
Normal file
BIN
bayesclass/tests/baseline_images/test_KDB/line_dashes_KDB.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 50 KiB |
BIN
bayesclass/tests/baseline_images/test_TAN/line_dashes_TAN.png
Normal file
BIN
bayesclass/tests/baseline_images/test_TAN/line_dashes_TAN.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 44 KiB |
Binary file not shown.
Before Width: | Height: | Size: 45 KiB |
92
bayesclass/tests/test_KDB.py
Normal file
92
bayesclass/tests/test_KDB.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
from matplotlib.testing.decorators import image_comparison
|
||||
from matplotlib.testing.conftest import mpl_test_settings
|
||||
|
||||
|
||||
from bayesclass import KDB
|
||||
from .._version import __version__
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
X, y = load_iris(return_X_y=True)
|
||||
enc = KBinsDiscretizer(encode="ordinal")
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return KDB(k=3)
|
||||
|
||||
|
||||
def test_KDB_default_hyperparameters(data, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf = KDB(show_progress=True, random_state=17, k=3)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf.fit(*data)
|
||||
assert clf.class_name_ == "class"
|
||||
assert clf.features_ == [
|
||||
"feature_0",
|
||||
"feature_1",
|
||||
"feature_2",
|
||||
"feature_3",
|
||||
]
|
||||
|
||||
|
||||
def test_KDB_version(clf):
|
||||
"""Check TAN version."""
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_KDB_nodes_leaves(clf):
|
||||
assert clf.nodes_leaves() == (0, 0)
|
||||
|
||||
|
||||
def test_KDB_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
attribs = ["classes_", "X_", "y_", "features_", "class_name_"]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 147
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes_KDB"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_KDB_plot(data, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"])
|
||||
clf.plot("KDB Iris")
|
||||
|
||||
|
||||
def test_KDB_wrong_num_features(data, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_KDB_wrong_hyperparam(data, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_KDB_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
clf.predict(X_diff_size)
|
@@ -17,14 +17,16 @@ def data():
|
||||
return enc.fit_transform(X), y
|
||||
|
||||
|
||||
def test_TAN_default_hyperparameters(data):
|
||||
clf = TAN()
|
||||
@pytest.fixture
|
||||
def clf():
|
||||
return TAN()
|
||||
|
||||
|
||||
def test_TAN_default_hyperparameters(data, clf):
|
||||
# Test default values of hyperparameters
|
||||
assert clf.simple_init
|
||||
assert not clf.show_progress
|
||||
assert clf.random_state is None
|
||||
clf = TAN(simple_init=True, show_progress=True, random_state=17)
|
||||
assert clf.simple_init
|
||||
clf = TAN(show_progress=True, random_state=17)
|
||||
assert clf.show_progress
|
||||
assert clf.random_state == 17
|
||||
clf.fit(*data)
|
||||
@@ -38,34 +40,26 @@ def test_TAN_default_hyperparameters(data):
|
||||
]
|
||||
|
||||
|
||||
def test_TAN_version():
|
||||
def test_TAN_version(clf):
|
||||
"""Check TAN version."""
|
||||
clf = TAN()
|
||||
assert __version__ == clf.version()
|
||||
|
||||
|
||||
def test_TAN_nodes_leaves(clf):
|
||||
assert clf.nodes_leaves() == (0, 0)
|
||||
|
||||
|
||||
def test_TAN_random_head(data):
|
||||
clf = TAN(random_state=17)
|
||||
clf.fit(*data, head="random")
|
||||
assert clf.head_ == 3
|
||||
|
||||
|
||||
def test_TAN_dag_initializer(data):
|
||||
clf_not_simple = TAN(simple_init=False)
|
||||
clf_simple = TAN(simple_init=True)
|
||||
clf_not_simple.fit(*data, head=0)
|
||||
clf_simple.fit(*data, head=0)
|
||||
assert clf_simple.dag_.edges == clf_not_simple.dag_.edges
|
||||
|
||||
|
||||
def test_TAN_classifier(data):
|
||||
clf = TAN()
|
||||
|
||||
def test_TAN_classifier(data, clf):
|
||||
clf.fit(*data)
|
||||
attribs = ["classes_", "X_", "y_", "head_", "features_", "class_name_"]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
@@ -74,40 +68,17 @@ def test_TAN_classifier(data):
|
||||
|
||||
|
||||
@image_comparison(
|
||||
baseline_images=["line_dashes"], remove_text=True, extensions=["png"]
|
||||
baseline_images=["line_dashes_TAN"], remove_text=True, extensions=["png"]
|
||||
)
|
||||
def test_TAN_plot(data):
|
||||
def test_TAN_plot(data, clf):
|
||||
# mpl_test_settings will automatically clean these internal side effects
|
||||
mpl_test_settings
|
||||
clf = TAN()
|
||||
dataset = load_iris(as_frame=True)
|
||||
clf.fit(*data, features=dataset["feature_names"], head=0)
|
||||
clf.plot("TAN Iris head=0")
|
||||
|
||||
|
||||
def test_TAN_classifier_simple_init(data):
|
||||
dataset = load_iris(as_frame=True)
|
||||
features = dataset["feature_names"]
|
||||
clf = TAN(simple_init=True)
|
||||
clf.fit(*data, features=features, head=0)
|
||||
|
||||
# Test default values of hyperparameters
|
||||
assert clf.simple_init
|
||||
|
||||
clf.fit(*data)
|
||||
attribs = ["classes_", "X_", "y_", "head_", "features_", "class_name_"]
|
||||
for attr in attribs:
|
||||
assert hasattr(clf, attr)
|
||||
|
||||
X = data[0]
|
||||
y = data[1]
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
||||
assert sum(y == y_pred) == 147
|
||||
|
||||
|
||||
def test_TAN_wrong_num_features(data):
|
||||
clf = TAN()
|
||||
def test_KDB_wrong_num_features(data, clf):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Number of features does not match the number of columns in X",
|
||||
@@ -115,21 +86,18 @@ def test_TAN_wrong_num_features(data):
|
||||
clf.fit(*data, features=["feature_1", "feature_2"])
|
||||
|
||||
|
||||
def test_TAN_wrong_hyperparam(data):
|
||||
clf = TAN()
|
||||
def test_TAN_wrong_hyperparam(data, clf):
|
||||
with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
|
||||
clf.fit(*data, wrong_param="wrong_param")
|
||||
|
||||
|
||||
def test_TAN_head_out_of_range(data):
|
||||
clf = TAN()
|
||||
def test_TAN_head_out_of_range(data, clf):
|
||||
with pytest.raises(ValueError, match="Head index out of range"):
|
||||
clf.fit(*data, head=4)
|
||||
|
||||
|
||||
def test_TAN_error_size_predict(data):
|
||||
def test_TAN_error_size_predict(data, clf):
|
||||
X, y = data
|
||||
clf = TAN()
|
||||
clf.fit(X, y)
|
||||
with pytest.raises(ValueError):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
Reference in New Issue
Block a user