Add test_BoostAODE

This commit is contained in:
2023-06-18 16:51:38 +02:00
parent a797381c00
commit 212f7e5584
3 changed files with 111 additions and 13 deletions

View File

@@ -818,6 +818,7 @@ class BoostSPODE(BayesBase):
def _train(self, kwargs):
states = dict(state_names=kwargs.get("state_names", []))
breakpoint()
self.model_ = BayesianNetwork(self.dag_.edges(), show_progress=False)
self.model_.fit(
self.dataset_,
@@ -834,9 +835,11 @@ class BoostAODE(ClassifierMixin, BaseEnsemble):
show_progress=False,
random_state=None,
estimator=None,
n_estimators=10,
):
self.show_progress = show_progress
self.random_state = random_state
self.n_estimators = n_estimators
super().__init__(estimator=estimator)
def _validate_estimator(self) -> None:
@@ -858,6 +861,7 @@ class BoostAODE(ClassifierMixin, BaseEnsemble):
self.y_ = y
self.n_samples_ = X.shape[0]
self.estimators_ = []
self._validate_estimator()
self._train(kwargs)
self.fitted_ = True
# To keep compatiblity with the benchmark platform
@@ -868,44 +872,37 @@ class BoostAODE(ClassifierMixin, BaseEnsemble):
"""Build boosted SPODEs"""
weights = [1 / self.n_samples_] * self.n_samples_
# Step 0: Set the finish condition
pending_features = self.feature_names_in_.copy()
exit_condition = len(pending_features) == 0
while not exit_condition:
for num in range(self.n_estimators):
# Step 1: Build ranking with mutual information
# OJO MAL, ESTO NO ACTUALIZA EL RANKING CON LOS PESOS
# SIEMPRE VA A SACAR LO MISMO
feature = (
SelectKBest(k="all")
SelectKBest(k=1)
.fit(self.X_, self.y_)
.get_feature_names_out(self.feature_names_in_)
.tolist()[0]
)
# Step 2: Build & train spode with the first feature as sparent
self._validate_estimator()
estimator = clone(self.estimator_)
_args = kwargs.copy()
_args["sparent"] = feature
_args["sample_weight"] = weights
_args["weighted"] = True
_args["X"] = self.X_
_args["y"] = self.y_
# Step 2.1: build dataset
# Step 2.2: Train the model
estimator.fit(**_args)
estimator.fit(self.X_, self.y_, **_args)
# Step 3: Compute errors (epsilon sub m & alpha sub m)
# Explanation in https://medium.datadriveninvestor.com/understanding-adaboost-and-scikit-learns-algorithm-c8d8af5ace10
y_pred = estimator.predict(self.X_)
em = np.sum(weights * (y_pred != self.y_)) / np.sum(weights)
am = np.log((1 - em) / em) + np.log(self.n_classes_ - 1)
am = np.log((1 - em) / em) + np.log(estimator.n_classes_ - 1)
# Step 3.2: Update weights for next classifier
weights = [
wm * np.exp(am * (ym != y_pred))
for wm, ym in zip(weights, self.y_)
]
print(weights)
# Step 4: Add the new model
self.estimators_.append(estimator)
# Final step: Update the finish condition
pending_features.remove(feature)
exit_condition = len(pending_features) == 0
"""
class_edges = [(self.class_name_, f) for f in self.feature_names_in_]
feature_edges = [

View File

@@ -0,0 +1,100 @@
import pytest
import numpy as np
from sklearn.preprocessing import KBinsDiscretizer
from matplotlib.testing.decorators import image_comparison
from matplotlib.testing.conftest import mpl_test_settings
from bayesclass.clfs import BoostAODE
from .._version import __version__
@pytest.fixture
def clf():
return BoostAODE(random_state=17)
def test_BoostAODE_default_hyperparameters(data_disc, clf):
# Test default values of hyperparameters
assert not clf.show_progress
assert clf.random_state == 17
clf = BoostAODE(show_progress=True)
assert clf.show_progress
assert clf.random_state is None
clf.fit(*data_disc)
assert clf.class_name_ == "class"
assert clf.feature_names_in_ == [
"feature_0",
"feature_1",
"feature_2",
"feature_3",
]
# @image_comparison(
# baseline_images=["line_dashes_AODE"], remove_text=True, extensions=["png"]
# )
# def test_BoostAODE_plot(data_disc, features, clf):
# # mpl_test_settings will automatically clean these internal side effects
# mpl_test_settings
# clf.fit(*data_disc, features=features)
# clf.plot("AODE Iris")
# def test_BoostAODE_version(clf, features, data_disc):
# """Check AODE version."""
# assert __version__ == clf.version()
# clf.fit(*data_disc, features=features)
# assert __version__ == clf.version()
# def test_BoostAODE_nodes_edges(clf, data_disc):
# assert clf.nodes_edges() == (0, 0)
# clf.fit(*data_disc)
# assert clf.nodes_leaves() == (20, 28)
# def test_BoostAODE_states(clf, data_disc):
# assert clf.states_ == 0
# clf.fit(*data_disc)
# assert clf.states_ == 19
# assert clf.depth_ == clf.states_
# def test_BoostAODE_classifier(data_disc, clf):
# clf.fit(*data_disc)
# attribs = [
# "feature_names_in_",
# "class_name_",
# "n_features_in_",
# "X_",
# "y_",
# ]
# for attr in attribs:
# assert hasattr(clf, attr)
# X = data_disc[0]
# y = data_disc[1]
# y_pred = clf.predict(X)
# assert y_pred.shape == (X.shape[0],)
# assert sum(y == y_pred) == 146
# def test_BoostAODE_wrong_num_features(data_disc, clf):
# with pytest.raises(
# ValueError,
# match="Number of features does not match the number of columns in X",
# ):
# clf.fit(*data_disc, features=["feature_1", "feature_2"])
# def test_BoostAODE_wrong_hyperparam(data_disc, clf):
# with pytest.raises(ValueError, match="Unexpected argument: wrong_param"):
# clf.fit(*data_disc, wrong_param="wrong_param")
# def test_BoostAODE_error_size_predict(data_disc, clf):
# X, y = data_disc
# clf.fit(X, y)
# with pytest.raises(ValueError):
# X_diff_size = np.ones((10, X.shape[1] + 1))
# clf.predict(X_diff_size)

View File

@@ -1,5 +1,6 @@
numpy
scipy
pandas
scikit-learn
matplotlib
networkx