BayesNet/bayesnet/ensembles/BoostAODE.cc
Ricardo Montañana Gómez b956aa3873
Upgrade version number to 1.0.5
Fix dependency graph
Remove loguru library
2024-04-20 18:00:40 +02:00

373 lines
17 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <set>
#include <functional>
#include <limits.h>
#include <tuple>
#include <folding.hpp>
#include "bayesnet/feature_selection/CFS.h"
#include "bayesnet/feature_selection/FCBF.h"
#include "bayesnet/feature_selection/IWSS.h"
#include "BoostAODE.h"
namespace bayesnet {
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = {
"maxModels", "bisection", "order", "convergence", "threshold",
"select_features", "maxTolerance", "predict_voting", "block_update"
};
}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
models.clear();
significanceModels.clear();
n_models = 0;
// Prepare the validation dataset
auto y_ = dataset.index({ -1, "..." });
if (convergence) {
// Prepare train & validation sets from train data
auto fold = folding::StratifiedKFold(5, y_, 271);
auto [train, test] = fold.getFold(0);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
// Get train and validation sets
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
y_train = dataset.index({ -1, train_t });
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
y_test = dataset.index({ -1, test_t });
dataset = X_train;
m = X_train.size(1);
auto n_classes = states.at(className).size();
// Build dataset with train data
buildDataset(y_train);
metrics = Metrics(dataset, features, className, n_classes);
} else {
// Use all data to train
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
y_train = y_;
}
}
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("order")) {
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
order_algorithm = hyperparameters["order"];
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
}
hyperparameters.erase("order");
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("bisection")) {
bisection = hyperparameters["bisection"];
hyperparameters.erase("bisection");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("maxTolerance")) {
maxTolerance = hyperparameters["maxTolerance"];
if (maxTolerance < 1 || maxTolerance > 4)
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
hyperparameters.erase("maxTolerance");
}
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
selectFeatures = true;
select_features_algorithm = selectedAlgorithm;
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
}
hyperparameters.erase("select_features");
}
if (hyperparameters.contains("block_update")) {
block_update = hyperparameters["block_update"];
hyperparameters.erase("block_update");
}
Classifier::setHyperparameters(hyperparameters);
}
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
{
bool terminate = false;
double alpha_t = 0;
auto mask_wrong = ypred != ytrain;
auto mask_right = ypred == ytrain;
auto masked_weights = weights * mask_wrong.to(weights.dtype());
double epsilon_t = masked_weights.sum().item<double>();
if (epsilon_t > 0.5) {
// Inverse the weights policy (plot ln(wt))
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
terminate = true;
} else {
double wt = (1 - epsilon_t) / epsilon_t;
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
// Step 3.2.2: Update weights of right samples
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights).item<double>();
weights = weights / totalWeights;
}
return { weights, alpha_t, terminate };
}
std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
{
/* Update Block algorithm
k = # of models in block
n_models = # of models in ensemble to make predictions
n_models_bak = # models saved
models = vector of models to make predictions
models_bak = models not used to make predictions
significances_bak = backup of significances vector
Case list
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
B) k = 1, n_models = n + 1 => n_models = n + k
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
D) k > 1, n_models = k => n = 0, n_models = n + k
E) k > 1, n_models = k + n => n_models = n + k
A, D) n=0, k > 0, n_models == k
1. n_models_bak <- n_models
2. significances_bak <- significances
3. significances = vector(k, 1)
4. Dont move any classifiers out of models
5. n_models <- k
6. Make prediction, compute alpha, update weights
7. Dont restore any classifiers to models
8. significances <- significances_bak
9. Update last k significances
10. n_models <- n_models_bak
B, C, E) n > 0, k > 0, n_models == n + k
1. n_models_bak <- n_models
2. significances_bak <- significances
3. significances = vector(k, 1)
4. Move first n classifiers to models_bak
5. n_models <- k
6. Make prediction, compute alpha, update weights
7. Insert classifiers in models_bak to be the first n models
8. significances <- significances_bak
9. Update last k significances
10. n_models <- n_models_bak
*/
//
// Make predict with only the last k models
//
std::unique_ptr<Classifier> model;
std::vector<std::unique_ptr<Classifier>> models_bak;
// 1. n_models_bak <- n_models 2. significances_bak <- significances
auto significance_bak = significanceModels;
auto n_models_bak = n_models;
// 3. significances = vector(k, 1)
significanceModels = std::vector<double>(k, 1.0);
// 4. Move first n classifiers to models_bak
// backup the first n_models - k models (if n_models == k, don't backup any)
for (int i = 0; i < n_models - k; ++i) {
model = std::move(models[0]);
models.erase(models.begin());
models_bak.push_back(std::move(model));
}
assert(models.size() == k);
// 5. n_models <- k
n_models = k;
// 6. Make prediction, compute alpha, update weights
auto ypred = predict(X_train);
//
// Update weights
//
double alpha_t;
bool terminate;
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
//
// Restore the models if needed
//
// 7. Insert classifiers in models_bak to be the first n models
// if n_models_bak == k, don't restore any, because none of them were moved
if (k != n_models_bak) {
// Insert in the same order as they were extracted
int bak_size = models_bak.size();
for (int i = 0; i < bak_size; ++i) {
model = std::move(models_bak[bak_size - 1 - i]);
models_bak.erase(models_bak.end() - 1);
models.insert(models.begin(), std::move(model));
}
}
// 8. significances <- significances_bak
significanceModels = significance_bak;
//
// Update the significance of the last k models
//
// 9. Update last k significances
for (int i = 0; i < k; ++i) {
significanceModels[n_models_bak - k + i] = alpha_t;
}
// 10. n_models <- n_models_bak
n_models = n_models_bak;
return { weights, alpha_t, terminate };
}
std::vector<int> BoostAODE::initializeModels()
{
std::vector<int> featuresUsed;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
int maxFeatures = 0;
if (select_features_algorithm == SelectFeatures.CFS) {
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
} else if (select_features_algorithm == SelectFeatures.IWSS) {
if (threshold < 0 || threshold >0.5) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
}
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
} else if (select_features_algorithm == SelectFeatures.FCBF) {
if (threshold < 1e-7 || threshold > 1) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
}
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
}
featureSelector->fit();
auto cfsFeatures = featureSelector->getFeatures();
auto scores = featureSelector->getScores();
for (const int& feature : cfsFeatures) {
featuresUsed.push_back(feature);
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
models.push_back(std::move(model));
significanceModels.push_back(1.0); // They will be updated later in trainModel
n_models++;
}
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
delete featureSelector;
return featuresUsed;
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
// Algorithm based on the adaboost algorithm for classification
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
fitted = true;
double alpha_t = 0;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool finished = false;
std::vector<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
auto ypred = predict(X_train);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
// Update significance of the models
for (int i = 0; i < n_models; ++i) {
significanceModels[i] = alpha_t;
}
if (finished) {
return;
}
}
int numItemsPack = 0; // The counter of the models inserted in the current pack
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double improvement = 1.0;
double convergence_threshold = 1e-4;
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
// Step 0: Set the finish condition
// epsilon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
// run out of features
bool ascending = order_algorithm == Orders.ASC;
std::mt19937 g{ 173 };
while (!finished) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
if (order_algorithm == Orders.RAND) {
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
}
// Remove used features
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
end(featureSelection)
);
int k = pow(2, tolerance);
int counter = 0; // The model counter of the current pack
while (counter++ < k && featureSelection.size() > 0) {
auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model;
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
alpha_t = 0.0;
if (!block_update) {
auto ypred = model->predict(X_train);
// Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
numItemsPack++;
featuresUsed.push_back(feature);
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
}
if (block_update) {
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
}
if (convergence && !finished) {
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
if (priorAccuracy == 0) {
priorAccuracy = accuracy;
} else {
improvement = accuracy - priorAccuracy;
}
if (improvement < convergence_threshold) {
tolerance++;
} else {
tolerance = 0; // Reset the counter if the model performs better
numItemsPack = 0;
}
// Keep the best accuracy until now as the prior accuracy
priorAccuracy = std::max(accuracy, priorAccuracy);
// priorAccuracy = accuracy;
}
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
}
if (tolerance > maxTolerance) {
if (numItemsPack < n_models) {
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
for (int i = 0; i < numItemsPack; ++i) {
significanceModels.pop_back();
models.pop_back();
n_models--;
}
} else {
notes.push_back("Convergence threshold reached & 0 models eliminated");
}
}
if (featuresUsed.size() != features.size()) {
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
status = WARNING;
}
notes.push_back("Number of models: " + std::to_string(n_models));
}
std::vector<std::string> BoostAODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}