104 lines
4.7 KiB
C++
104 lines
4.7 KiB
C++
#include <catch2/catch_test_macros.hpp>
|
|
#include <catch2/matchers/catch_matchers.hpp>
|
|
#include <string>
|
|
#include "TestUtils.h"
|
|
#include "bayesnet/classifiers/TAN.h"
|
|
#include "bayesnet/classifiers/KDB.h"
|
|
#include "bayesnet/classifiers/KDBLd.h"
|
|
|
|
|
|
TEST_CASE("Test Cannot build dataset with wrong data vector", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", true);
|
|
raw.yv.pop_back();
|
|
REQUIRE_THROWS_AS(model.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv), std::runtime_error);
|
|
REQUIRE_THROWS_WITH(model.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
|
}
|
|
TEST_CASE("Test Cannot build dataset with wrong data tensor", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", true);
|
|
auto yshort = torch::zeros({ 149 }, torch::kInt32);
|
|
REQUIRE_THROWS_AS(model.fit(raw.Xt, yshort, raw.featurest, raw.classNamet, raw.statest), std::runtime_error);
|
|
REQUIRE_THROWS_WITH(model.fit(raw.Xt, yshort, raw.featurest, raw.classNamet, raw.statest), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]");
|
|
}
|
|
TEST_CASE("Invalid data type", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", false);
|
|
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), std::invalid_argument);
|
|
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), "dataset (X, y) must be of type Integer");
|
|
}
|
|
TEST_CASE("Invalid number of features", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", true);
|
|
auto Xt = torch::cat({ raw.Xt, torch::zeros({ 1, 150 }, torch::kInt32) }, 0);
|
|
REQUIRE_THROWS_AS(model.fit(Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), std::invalid_argument);
|
|
REQUIRE_THROWS_WITH(model.fit(Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest), "Classifier: X 5 and features 4 must have the same number of features");
|
|
}
|
|
TEST_CASE("Invalid class name", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", true);
|
|
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.featurest, "duck", raw.statest), std::invalid_argument);
|
|
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.featurest, "duck", raw.statest), "class name not found in states");
|
|
}
|
|
TEST_CASE("Invalid feature name", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", true);
|
|
auto statest = raw.statest;
|
|
statest.erase("petallength");
|
|
REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, statest), std::invalid_argument);
|
|
REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, statest), "feature [petallength] not found in states");
|
|
}
|
|
TEST_CASE("Topological order", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", true);
|
|
model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
|
auto order = model.topological_order();
|
|
REQUIRE(order.size() == 4);
|
|
REQUIRE(order[0] == "petallength");
|
|
REQUIRE(order[1] == "sepallength");
|
|
REQUIRE(order[2] == "sepalwidth");
|
|
REQUIRE(order[3] == "petalwidth");
|
|
}
|
|
TEST_CASE("Not fitted model", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::TAN();
|
|
auto raw = RawDatasets("iris", true);
|
|
auto message = "Classifier has not been fitted";
|
|
// tensors
|
|
REQUIRE_THROWS_AS(model.predict(raw.Xt), std::logic_error);
|
|
REQUIRE_THROWS_WITH(model.predict(raw.Xt), message);
|
|
REQUIRE_THROWS_AS(model.predict_proba(raw.Xt), std::logic_error);
|
|
REQUIRE_THROWS_WITH(model.predict_proba(raw.Xt), message);
|
|
REQUIRE_THROWS_AS(model.score(raw.Xt, raw.yt), std::logic_error);
|
|
REQUIRE_THROWS_WITH(model.score(raw.Xt, raw.yt), message);
|
|
// vectors
|
|
REQUIRE_THROWS_AS(model.predict(raw.Xv), std::logic_error);
|
|
REQUIRE_THROWS_WITH(model.predict(raw.Xv), message);
|
|
REQUIRE_THROWS_AS(model.predict_proba(raw.Xv), std::logic_error);
|
|
REQUIRE_THROWS_WITH(model.predict_proba(raw.Xv), message);
|
|
REQUIRE_THROWS_AS(model.score(raw.Xv, raw.yv), std::logic_error);
|
|
REQUIRE_THROWS_WITH(model.score(raw.Xv, raw.yv), message);
|
|
}
|
|
TEST_CASE("KDB Graph", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::KDB(2);
|
|
auto raw = RawDatasets("iris", true);
|
|
model.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
|
auto graph = model.graph();
|
|
REQUIRE(graph.size() == 15);
|
|
}
|
|
TEST_CASE("KDBLd Graph", "[Classifier]")
|
|
{
|
|
auto model = bayesnet::KDBLd(2);
|
|
auto raw = RawDatasets("iris", false);
|
|
model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
|
auto graph = model.graph();
|
|
REQUIRE(graph.size() == 15);
|
|
} |