BayesNet/sample/test.cc

206 lines
7.8 KiB
C++

// #include <torch/torch.h>
// int main()
// {
// torch::Tensor t = torch::rand({ 5, 5 });
// // Print original tensor
// std::cout << t << std::endl;
// // New value
// torch::Tensor new_val = torch::tensor(10.0f);
// // Indices for the cell you want to update
// auto index_i = torch::tensor({ 2 });
// auto index_j = torch::tensor({ 3 });
// // Update cell
// t.index_put_({ index_i, index_j }, new_val);
// // Print updated tensor
// std::cout << t << std::endl;
// }
#include <torch/torch.h>
#include <iostream>
#include <vector>
#include <string>
using namespace std;
double entropy(torch::Tensor feature)
{
torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log2(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.sum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double conditionalEntropy(torch::Tensor firstFeature, torch::Tensor secondFeature)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount();
unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
totalWeight += 1;
}
if (totalWeight == 0)
throw invalid_argument("Total weight should not be zero");
double entropy = 0;
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
double p_f = featureCounts[value].item<double>() / totalWeight;
double entropy_f = 0;
for (auto& [label, jointCount] : jointCounts[value]) {
double p_l_f = jointCount / featureCounts[value].item<double>();
if (p_l_f > 0) {
entropy_f -= p_l_f * log2(p_l_f);
} else {
entropy_f = 0;
}
}
entropy += p_f * entropy_f;
}
return entropy;
}
// I(X;Y) = H(Y) - H(Y|X)
double mutualInformation(torch::Tensor firstFeature, torch::Tensor secondFeature)
{
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
}
double entropy2(torch::Tensor feature)
{
return torch::special::entr(feature).sum().item<double>();
}
int main()
{
//int i = 3, j = 1, k = 2; // Indices for the cell you want to update
// Print original tensor
// torch::Tensor t = torch::tensor({ {1, 2, 3}, {4, 5, 6} }); // 3D tensor for this example
// auto variables = vector<string>{ "A", "B" };
// auto cardinalities = vector<int>{ 5, 4 };
// torch::Tensor values = torch::rand({ 5, 4 });
// auto candidate = "B";
// vector<string> newVariables;
// vector<int> newCardinalities;
// for (int i = 0; i < variables.size(); i++) {
// if (variables[i] != candidate) {
// newVariables.push_back(variables[i]);
// newCardinalities.push_back(cardinalities[i]);
// }
// }
// torch::Tensor newValues = values.sum(1);
// cout << "original values" << endl;
// cout << values << endl;
// cout << "newValues" << endl;
// cout << newValues << endl;
// cout << "newVariables" << endl;
// for (auto& variable : newVariables) {
// cout << variable << endl;
// }
// cout << "newCardinalities" << endl;
// for (auto& cardinality : newCardinalities) {
// cout << cardinality << endl;
// }
// auto row2 = values.index({ torch::tensor(1) }); //
// cout << "row2" << endl;
// cout << row2 << endl;
// auto col2 = values.index({ "...", 1 });
// cout << "col2" << endl;
// cout << col2 << endl;
// auto col_last = values.index({ "...", -1 });
// cout << "col_last" << endl;
// cout << col_last << endl;
// values.index_put_({ "...", -1 }, torch::tensor({ 1,2,3,4,5 }));
// cout << "col_last" << endl;
// cout << col_last << endl;
// auto slice2 = values.index({ torch::indexing::Slice(1, torch::indexing::None) });
// cout << "slice2" << endl;
// cout << slice2 << endl;
// auto mask = values.index({ "...", -1 }) % 2 == 0;
// auto filter = values.index({ mask, 2 }); // Filter values
// cout << "filter" << endl;
// cout << filter << endl;
// torch::Tensor dataset = torch::tensor({ {1,0,0,1},{1,1,1,2},{0,0,0,1},{1,0,2,0},{0,0,3,0} });
// cout << "dataset" << endl;
// cout << dataset << endl;
// cout << "entropy(dataset.indices('...', 2))" << endl;
// cout << dataset.index({ "...", 2 }) << endl;
// cout << "*********************************" << endl;
// for (int i = 0; i < 4; i++) {
// cout << "datset(" << i << ")" << endl;
// cout << dataset.index({ "...", i }) << endl;
// cout << "entropy(" << i << ")" << endl;
// cout << entropy(dataset.index({ "...", i })) << endl;
// }
// cout << "......................................" << endl;
// //cout << entropy2(dataset.index({ "...", 2 }));
// cout << "conditional entropy 0 2" << endl;
// cout << conditionalEntropy(dataset.index({ "...", 0 }), dataset.index({ "...", 2 })) << endl;
// cout << "mutualInformation(dataset.index({ '...', 0 }), dataset.index({ '...', 2 }))" << endl;
// cout << mutualInformation(dataset.index({ "...", 0 }), dataset.index({ "...", 2 })) << endl;
// auto test = torch::tensor({ .1, .2, .3 }, torch::kFloat);
// auto result = torch::zeros({ 3, 3 }, torch::kFloat);
// result.index_put_({ indices }, test);
// cout << "indices" << endl;
// cout << indices << endl;
// cout << "result" << endl;
// cout << result << endl;
// cout << "Test" << endl;
// cout << torch::triu(test.reshape(3, 3), torch::kFloat)) << endl;
// Create a 3x3 tensor with zeros
torch::Tensor tensor_3x3 = torch::zeros({ 3, 3 }, torch::kFloat);
// Create a 1D tensor with the three elements you want to set in the upper corner
torch::Tensor tensor_1d = torch::tensor({ 10, 11, 12 }, torch::kFloat);
// Set the upper corner of the 3x3 tensor
auto indices = torch::triu_indices(3, 3, 1);
for (auto i = 0; i < tensor_1d.sizes()[0]; ++i) {
auto x = indices[0][i];
auto y = indices[1][i];
tensor_3x3[x][y] = tensor_1d[i];
tensor_3x3[y][x] = tensor_1d[i];
}
// Print the resulting 3x3 tensor
std::cout << tensor_3x3 << std::endl;
// std::cout << t << std::endl;
// std::cout << "sum(0)" << std::endl;
// std::cout << t.sum(0) << std::endl;
// std::cout << "sum(1)" << std::endl;
// std::cout << t.sum(1) << std::endl;
// std::cout << "Normalized" << std::endl;
// std::cout << t / t.sum(0) << std::endl;
// New value
// torch::Tensor new_val = torch::tensor(10.0f);
// // Indices for the cell you want to update
// std::vector<torch::Tensor> indices;
// indices.push_back(torch::tensor(i)); // Replace i with your index for the 1st dimension
// indices.push_back(torch::tensor(j)); // Replace j with your index for the 2nd dimension
// indices.push_back(torch::tensor(k)); // Replace k with your index for the 3rd dimension
// //torch::ArrayRef<at::indexing::TensorIndex> indices_ref(indices);
// // Update cell
// //torch::Tensor result = torch::stack(indices);
// //torch::List<c10::optional<torch::Tensor>> indices_list = { torch::tensor(i), torch::tensor(j), torch::tensor(k) };
// torch::List<c10::optional<torch::Tensor>> indices_list;
// indices_list.push_back(torch::tensor(i));
// indices_list.push_back(torch::tensor(j));
// indices_list.push_back(torch::tensor(k));
// //t.index_put_({ torch::tensor(i), torch::tensor(j), torch::tensor(k) }, new_val);
// t.index_put_(indices_list, new_val);
// // Print updated tensor
// std::cout << t << std::endl;
}