47 lines
1.9 KiB
C++
47 lines
1.9 KiB
C++
#include <limits>
|
|
#include "bayesnet/utils/bayesnetUtils.h"
|
|
#include "IWSS.h"
|
|
namespace bayesnet {
|
|
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
|
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
|
{
|
|
if (threshold < 0 || threshold > .5) {
|
|
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
|
|
}
|
|
}
|
|
void IWSS::fit()
|
|
{
|
|
initialize();
|
|
computeSuLabels();
|
|
auto featureOrder = argsort(suLabels); // sort descending order
|
|
auto featureOrderCopy = featureOrder;
|
|
// Add first and second features to result
|
|
// First with its own score
|
|
auto first_feature = pop_first(featureOrderCopy);
|
|
selectedFeatures.push_back(first_feature);
|
|
selectedScores.push_back(suLabels.at(first_feature));
|
|
// Second with the score of the candidates
|
|
selectedFeatures.push_back(pop_first(featureOrderCopy));
|
|
auto merit = computeMeritCFS();
|
|
selectedScores.push_back(merit);
|
|
for (const auto feature : featureOrderCopy) {
|
|
selectedFeatures.push_back(feature);
|
|
// Compute merit with selectedFeatures
|
|
auto meritNew = computeMeritCFS();
|
|
double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;
|
|
if (meritNew > merit || delta < threshold) {
|
|
if (meritNew > merit) {
|
|
merit = meritNew;
|
|
}
|
|
selectedScores.push_back(meritNew);
|
|
} else {
|
|
selectedFeatures.pop_back();
|
|
break;
|
|
}
|
|
if (selectedFeatures.size() == maxFeatures) {
|
|
break;
|
|
}
|
|
}
|
|
fitted = true;
|
|
}
|
|
} |