161 lines
8.0 KiB
C++
161 lines
8.0 KiB
C++
// ***************************************************************
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
// SPDX-FileType: SOURCE
|
|
// SPDX-License-Identifier: MIT
|
|
// ***************************************************************
|
|
|
|
#include <random>
|
|
#include <set>
|
|
#include <functional>
|
|
#include <limits.h>
|
|
#include <tuple>
|
|
#include "BoostAODE.h"
|
|
|
|
namespace bayesnet {
|
|
|
|
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
|
|
{
|
|
}
|
|
std::vector<int> BoostAODE::initializeModels(const Smoothing_t smoothing)
|
|
{
|
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
|
std::vector<int> featuresSelected = featureSelection(weights_);
|
|
for (const int& feature : featuresSelected) {
|
|
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
|
model->fit(dataset, features, className, states, weights_, smoothing);
|
|
models.push_back(std::move(model));
|
|
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
|
n_models++;
|
|
}
|
|
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
|
return featuresSelected;
|
|
}
|
|
void BoostAODE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
|
{
|
|
//
|
|
// Logging setup
|
|
//
|
|
// loguru::set_thread_name("BoostAODE");
|
|
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
|
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
|
|
|
// Algorithm based on the adaboost algorithm for classification
|
|
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
|
fitted = true;
|
|
double alpha_t = 0;
|
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
|
bool finished = false;
|
|
std::vector<int> featuresUsed;
|
|
if (selectFeatures) {
|
|
featuresUsed = initializeModels(smoothing);
|
|
auto ypred = predict(X_train);
|
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
|
// Update significance of the models
|
|
for (int i = 0; i < n_models; ++i) {
|
|
significanceModels[i] = alpha_t;
|
|
}
|
|
if (finished) {
|
|
return;
|
|
}
|
|
}
|
|
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
|
// Variables to control the accuracy finish condition
|
|
double priorAccuracy = 0.0;
|
|
double improvement = 1.0;
|
|
double convergence_threshold = 1e-4;
|
|
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
|
// Step 0: Set the finish condition
|
|
// epsilon sub t > 0.5 => inverse the weights policy
|
|
// validation error is not decreasing
|
|
// run out of features
|
|
bool ascending = order_algorithm == Orders.ASC;
|
|
std::mt19937 g{ 173 };
|
|
while (!finished) {
|
|
// Step 1: Build ranking with mutual information
|
|
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
|
if (order_algorithm == Orders.RAND) {
|
|
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
|
}
|
|
// Remove used features
|
|
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
|
|
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
|
end(featureSelection)
|
|
);
|
|
int k = bisection ? pow(2, tolerance) : 1;
|
|
int counter = 0; // The model counter of the current pack
|
|
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
|
while (counter++ < k && featureSelection.size() > 0) {
|
|
auto feature = featureSelection[0];
|
|
featureSelection.erase(featureSelection.begin());
|
|
std::unique_ptr<Classifier> model;
|
|
model = std::make_unique<SPODE>(feature);
|
|
model->fit(dataset, features, className, states, weights_, smoothing);
|
|
alpha_t = 0.0;
|
|
if (!block_update) {
|
|
auto ypred = model->predict(X_train);
|
|
// Step 3.1: Compute the classifier amout of say
|
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
|
}
|
|
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
|
numItemsPack++;
|
|
featuresUsed.push_back(feature);
|
|
models.push_back(std::move(model));
|
|
significanceModels.push_back(alpha_t);
|
|
n_models++;
|
|
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
|
}
|
|
if (block_update) {
|
|
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
|
}
|
|
if (convergence && !finished) {
|
|
auto y_val_predict = predict(X_test);
|
|
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
|
if (priorAccuracy == 0) {
|
|
priorAccuracy = accuracy;
|
|
} else {
|
|
improvement = accuracy - priorAccuracy;
|
|
}
|
|
if (improvement < convergence_threshold) {
|
|
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
|
tolerance++;
|
|
} else {
|
|
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
|
tolerance = 0; // Reset the counter if the model performs better
|
|
numItemsPack = 0;
|
|
}
|
|
if (convergence_best) {
|
|
// Keep the best accuracy until now as the prior accuracy
|
|
priorAccuracy = std::max(accuracy, priorAccuracy);
|
|
} else {
|
|
// Keep the last accuray obtained as the prior accuracy
|
|
priorAccuracy = accuracy;
|
|
}
|
|
}
|
|
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
|
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
|
}
|
|
if (tolerance > maxTolerance) {
|
|
if (numItemsPack < n_models) {
|
|
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
|
for (int i = 0; i < numItemsPack; ++i) {
|
|
significanceModels.pop_back();
|
|
models.pop_back();
|
|
n_models--;
|
|
}
|
|
} else {
|
|
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
|
}
|
|
}
|
|
if (featuresUsed.size() != features.size()) {
|
|
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
|
|
status = WARNING;
|
|
}
|
|
notes.push_back("Number of models: " + std::to_string(n_models));
|
|
}
|
|
std::vector<std::string> BoostAODE::graph(const std::string& title) const
|
|
{
|
|
return Ensemble::graph(title);
|
|
}
|
|
} |