BayesNet/Network.cc

80 lines
2.6 KiB
C++

#include "Network.h"
namespace bayesnet {
Network::~Network()
{
for (auto& pair : nodes) {
delete pair.second;
}
}
void Network::addNode(std::string name, int numStates)
{
nodes[name] = new Node(name, numStates);
}
void Network::addEdge(const std::string parent, const std::string child)
{
if (nodes.find(parent) == nodes.end()) {
throw std::invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw std::invalid_argument("Child node " + child + " does not exist");
}
nodes[parent]->addChild(nodes[child]);
nodes[child]->addParent(nodes[parent]);
}
std::map<std::string, Node*>& Network::getNodes()
{
return nodes;
}
void Network::fit(const std::vector<std::vector<int>>& dataset, const int smoothing)
{
auto jointCounts = [](const std::vector<std::vector<int>>& data, const std::vector<int>& indices, int numStates) {
int size = indices.size();
std::vector<int64_t> sizes(size, numStates);
torch::Tensor counts = torch::zeros(sizes, torch::kLong);
for (const auto& row : data) {
int idx = 0;
for (int i = 0; i < size; ++i) {
idx = idx * numStates + row[indices[i]];
}
counts.view({ -1 }).add_(idx, 1);
}
return counts;
};
auto marginalCounts = [](const torch::Tensor& jointCounts) {
return jointCounts.sum(-1);
};
for (auto& pair : nodes) {
Node* node = pair.second;
std::vector<int> indices;
for (const auto& parent : node->getParents()) {
indices.push_back(nodes[parent->getName()]->getId());
}
indices.push_back(node->getId());
for (auto& child : node->getChildren()) {
torch::Tensor counts = jointCounts(dataset, indices, node->getNumStates()) + smoothing;
torch::Tensor parentCounts = marginalCounts(counts);
parentCounts = parentCounts.unsqueeze(-1);
torch::Tensor cpt = counts.to(torch::kDouble) / parentCounts.to(torch::kDouble);
setCPD(node->getCPDKey(child), cpt);
}
}
}
torch::Tensor& Network::getCPD(const std::string& key)
{
return cpds[key];
}
void Network::setCPD(const std::string& key, const torch::Tensor& cpt)
{
cpds[key] = cpt;
}
}