39 lines
1.7 KiB
C++
39 lines
1.7 KiB
C++
#include "TAN.h"
|
|
|
|
namespace bayesnet {
|
|
TAN::TAN() : Classifier(Network()) {}
|
|
|
|
void TAN::buildModel(const torch::Tensor& weights)
|
|
{
|
|
// 0. Add all nodes to the model
|
|
addNodes();
|
|
// 1. Compute mutual information between each feature and the class and set the root node
|
|
// as the highest mutual information with the class
|
|
auto mi = std::vector <std::pair<int, float >>();
|
|
torch::Tensor class_dataset = dataset.index({ -1, "..." });
|
|
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
|
torch::Tensor feature_dataset = dataset.index({ i, "..." });
|
|
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
|
|
mi.push_back({ i, mi_value });
|
|
}
|
|
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
|
auto root = mi[mi.size() - 1].first;
|
|
// 2. Compute mutual information between each feature and the class
|
|
auto weights_matrix = metrics.conditionalEdge(weights);
|
|
// 3. Compute the maximum spanning tree
|
|
auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
|
|
// 4. Add edges from the maximum spanning tree to the model
|
|
for (auto i = 0; i < mst.size(); ++i) {
|
|
auto [from, to] = mst[i];
|
|
model.addEdge(features[from], features[to]);
|
|
}
|
|
// 5. Add edges from the class to all features
|
|
for (auto feature : features) {
|
|
model.addEdge(className, feature);
|
|
}
|
|
}
|
|
std::vector<std::string> TAN::graph(const std::string& title) const
|
|
{
|
|
return model.graph(title);
|
|
}
|
|
} |