BayesNet/bayesnet/classifiers/Classifier.cc

184 lines
7.1 KiB
C++

#include "bayesnet/utils/bayesnetUtils.h"
#include "Classifier.h"
namespace bayesnet {
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->features = features;
this->className = className;
this->states = states;
m = dataset.size(1);
n = features.size();
checkFitParameters();
auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes);
model.initialize();
buildModel(weights);
trainModel(weights);
fitted = true;
return *this;
}
void Classifier::buildDataset(torch::Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
std::cout << "X dimensions: " << dataset.sizes() << "\n";
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel(const torch::Tensor& weights)
{
model.fit(dataset, weights, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
dataset = X;
buildDataset(y);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
for (int i = 0; i < X.size(); ++i) {
dataset.index_put_({ i, "..." }, torch::tensor(X[i], torch::kInt32));
}
auto ytmp = torch::tensor(y, torch::kInt32);
buildDataset(ytmp);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
this->dataset = dataset;
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->dataset = dataset;
return build(features, className, states, weights);
}
void Classifier::checkFitParameters()
{
if (torch::is_floating_point(dataset)) {
throw std::invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) {
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw std::invalid_argument("className not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
throw std::invalid_argument("feature [" + feature + "] not found in states");
}
}
}
torch::Tensor Classifier::predict(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.predict(X);
}
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict(Xd);
return yp;
}
torch::Tensor Classifier::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.predict_proba(X);
}
std::vector<std::vector<double>> Classifier::predict_proba(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
// Convert to nxm vector
for (auto i = 0; i < n_; i++) {
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict_proba(Xd);
return yp;
}
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
{
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.score(X, y);
}
std::vector<std::string> Classifier::show() const
{
return model.show();
}
void Classifier::addNodes()
{
// Add all nodes to the network
for (const auto& feature : features) {
model.addNode(feature);
}
model.addNode(className);
}
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() : 0;
}
int Classifier::getNumberOfEdges() const
{
return fitted ? model.getNumEdges() : 0;
}
int Classifier::getNumberOfStates() const
{
return fitted ? model.getStates() : 0;
}
int Classifier::getClassNumStates() const
{
return fitted ? model.getClassNumStates() : 0;
}
std::vector<std::string> Classifier::topological_order()
{
return model.topological_sort();
}
void Classifier::dump_cpt() const
{
model.dump_cpt();
}
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
//For classifiers that don't have hyperparameters
}
}