BayesNet/bayesnet/classifiers/TANLd.cc

30 lines
1.1 KiB
C++

#include "TANLd.h"
namespace bayesnet {
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
torch::Tensor TANLd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
std::vector<std::string> TANLd::graph(const std::string& name) const
{
return TAN::graph(name);
}
}