30 lines
1.1 KiB
C++
30 lines
1.1 KiB
C++
#include "TANLd.h"
|
|
|
|
namespace bayesnet {
|
|
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
|
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
|
{
|
|
checkInput(X_, y_);
|
|
features = features_;
|
|
className = className_;
|
|
Xf = X_;
|
|
y = y_;
|
|
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
|
states = fit_local_discretization(y);
|
|
// We have discretized the input data
|
|
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
|
TAN::fit(dataset, features, className, states);
|
|
states = localDiscretizationProposal(states, model);
|
|
return *this;
|
|
|
|
}
|
|
torch::Tensor TANLd::predict(torch::Tensor& X)
|
|
{
|
|
auto Xt = prepareX(X);
|
|
return TAN::predict(Xt);
|
|
}
|
|
std::vector<std::string> TANLd::graph(const std::string& name) const
|
|
{
|
|
return TAN::graph(name);
|
|
}
|
|
} |