BayesNet/Network.cc
2023-07-01 01:44:56 +02:00

132 lines
5.1 KiB
C++

#include "Network.h"
namespace bayesnet {
Network::Network() : laplaceSmoothing(1), root(nullptr), features(vector<string>()), className("") {}
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr), features(vector<string>()), className("") {}
Network::~Network()
{
for (auto& pair : nodes) {
delete pair.second;
}
}
void Network::addNode(string name, int numStates)
{
if (nodes.find(name) != nodes.end()) {
throw invalid_argument("Node " + name + " already exists");
}
nodes[name] = new Node(name, numStates);
if (root == nullptr) {
root = nodes[name];
}
}
void Network::setRoot(string name)
{
if (nodes.find(name) == nodes.end()) {
throw invalid_argument("Node " + name + " does not exist");
}
root = nodes[name];
}
Node* Network::getRoot()
{
return root;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
visited.insert(nodeId);
recStack.insert(nodeId);
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string parent, const string child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child]);
nodes[child]->addParent(nodes[parent]);
// temporarily add edge
unordered_set<string> visited;
unordered_set<string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove problematic edge
nodes[parent]->removeChild(nodes[child]);
nodes[child]->removeParent(nodes[parent]);
throw invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, Node*>& Network::getNodes()
{
return nodes;
}
void Network::buildNetwork()
{
// Add features as nodes to the network
for (int i = 0; i < features.size(); ++i) {
addNode(features[i], *max_element(dataset[features[i]].begin(), dataset[features[i]].end()) + 1);
}
// Add class as node to the network
addNode(className, *max_element(dataset[className].begin(), dataset[className].end()) + 1);
// Add edges from class to features => naive Bayes
for (auto feature : features) {
addEdge(className, feature);
}
addEdge("petalwidth", "petallength");
}
void Network::fit(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
features = featureNames;
this->className = className;
// Build dataset
for (int i = 0; i < featureNames.size(); ++i) {
this->dataset[featureNames[i]] = dataset[i];
}
this->dataset[className] = labels;
buildNetwork();
estimateParameters();
}
void Network::estimateParameters()
{
auto dimensions = vector<int64_t>();
for (auto [name, node] : nodes) {
// Get dimensions of the CPT
dimensions.clear();
dimensions.push_back(node->getNumStates());
for (auto father : node->getParents()) {
dimensions.push_back(father->getNumStates());
}
auto length = dimensions.size();
// Create a tensor of zeros with the dimensions of the CPT
torch::Tensor cpt = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
for (auto father : node->getParents()) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
}
// Increment the count of the corresponding coordinate
cpt.index_put_({ coordinates }, cpt.index({ coordinates }) + 1);
}
// Normalize the counts
cpt = cpt / cpt.sum(0);
// store thre resulting cpt in the node
node->setCPT(cpt);
}
}
}