132 lines
9.2 KiB
HTML
132 lines
9.2 KiB
HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
|
|
|
<html lang="en">
|
|
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
|
<title>LCOV - BayesNet Coverage Report - bayesnet/ensembles/AODELd.cc</title>
|
|
<link rel="stylesheet" type="text/css" href="../../gcov.css">
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
|
<tr><td class="title">LCOV - code coverage report</td></tr>
|
|
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
|
|
|
<tr>
|
|
<td width="100%">
|
|
<table cellpadding=1 border=0 width="100%">
|
|
<tr>
|
|
<td width="10%" class="headerItem">Current view:</td>
|
|
<td width="10%" class="headerValue"><a href="../../index.html" target="_parent">top level</a> - <a href="index.html" target="_parent">bayesnet/ensembles</a> - AODELd.cc<span style="font-size: 80%;"> (source / <a href="AODELd.cc.func-c.html">functions</a>)</span></td>
|
|
<td width="5%"></td>
|
|
<td width="5%"></td>
|
|
<td width="5%" class="headerCovTableHead">Coverage</td>
|
|
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
|
|
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
|
|
</tr>
|
|
<tr>
|
|
<td class="headerItem">Test:</td>
|
|
<td class="headerValue">BayesNet Coverage Report</td>
|
|
<td></td>
|
|
<td class="headerItem">Lines:</td>
|
|
<td class="headerCovTableEntryHi">100.0 %</td>
|
|
<td class="headerCovTableEntry">24</td>
|
|
<td class="headerCovTableEntry">24</td>
|
|
</tr>
|
|
<tr>
|
|
<td class="headerItem">Test Date:</td>
|
|
<td class="headerValue">2024-05-06 17:54:04</td>
|
|
<td></td>
|
|
<td class="headerItem">Functions:</td>
|
|
<td class="headerCovTableEntryHi">100.0 %</td>
|
|
<td class="headerCovTableEntry">5</td>
|
|
<td class="headerCovTableEntry">5</td>
|
|
</tr>
|
|
<tr>
|
|
<td class="headerItem">Legend:</td>
|
|
<td class="headerValueLeg"> Lines:
|
|
<span class="coverLegendCov">hit</span>
|
|
<span class="coverLegendNoCov">not hit</span>
|
|
</td>
|
|
<td></td>
|
|
</tr>
|
|
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
|
</table>
|
|
</td>
|
|
</tr>
|
|
|
|
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
|
</table>
|
|
|
|
<table cellpadding=0 cellspacing=0 border=0>
|
|
<tr>
|
|
<td><br></td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<pre class="sourceHeading"> Line data Source code</pre>
|
|
<pre class="source">
|
|
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
|
|
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
|
|
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
|
|
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
|
|
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
|
|
<span id="L6"><span class="lineNum"> 6</span> : </span>
|
|
<span id="L7"><span class="lineNum"> 7</span> : #include "AODELd.h"</span>
|
|
<span id="L8"><span class="lineNum"> 8</span> : </span>
|
|
<span id="L9"><span class="lineNum"> 9</span> : namespace bayesnet {</span>
|
|
<span id="L10"><span class="lineNum"> 10</span> <span class="tlaGNC tlaBgGNC"> 68 : AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)</span></span>
|
|
<span id="L11"><span class="lineNum"> 11</span> : {</span>
|
|
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 68 : }</span></span>
|
|
<span id="L13"><span class="lineNum"> 13</span> <span class="tlaGNC"> 20 : AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)</span></span>
|
|
<span id="L14"><span class="lineNum"> 14</span> : {</span>
|
|
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 20 : checkInput(X_, y_);</span></span>
|
|
<span id="L16"><span class="lineNum"> 16</span> <span class="tlaGNC"> 20 : features = features_;</span></span>
|
|
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 20 : className = className_;</span></span>
|
|
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 20 : Xf = X_;</span></span>
|
|
<span id="L19"><span class="lineNum"> 19</span> <span class="tlaGNC"> 20 : y = y_;</span></span>
|
|
<span id="L20"><span class="lineNum"> 20</span> : // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y</span>
|
|
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 20 : states = fit_local_discretization(y);</span></span>
|
|
<span id="L22"><span class="lineNum"> 22</span> : // We have discretized the input data</span>
|
|
<span id="L23"><span class="lineNum"> 23</span> : // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network</span>
|
|
<span id="L24"><span class="lineNum"> 24</span> <span class="tlaGNC"> 20 : Ensemble::fit(dataset, features, className, states);</span></span>
|
|
<span id="L25"><span class="lineNum"> 25</span> <span class="tlaGNC"> 20 : return *this;</span></span>
|
|
<span id="L26"><span class="lineNum"> 26</span> : </span>
|
|
<span id="L27"><span class="lineNum"> 27</span> : }</span>
|
|
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 20 : void AODELd::buildModel(const torch::Tensor& weights)</span></span>
|
|
<span id="L29"><span class="lineNum"> 29</span> : {</span>
|
|
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 20 : models.clear();</span></span>
|
|
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 168 : for (int i = 0; i < features.size(); ++i) {</span></span>
|
|
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 148 : models.push_back(std::make_unique<SPODELd>(i));</span></span>
|
|
<span id="L33"><span class="lineNum"> 33</span> : }</span>
|
|
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 20 : n_models = models.size();</span></span>
|
|
<span id="L35"><span class="lineNum"> 35</span> <span class="tlaGNC"> 20 : significanceModels = std::vector<double>(n_models, 1.0);</span></span>
|
|
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 20 : }</span></span>
|
|
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 20 : void AODELd::trainModel(const torch::Tensor& weights)</span></span>
|
|
<span id="L38"><span class="lineNum"> 38</span> : {</span>
|
|
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 168 : for (const auto& model : models) {</span></span>
|
|
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaGNC"> 148 : model->fit(Xf, y, features, className, states);</span></span>
|
|
<span id="L41"><span class="lineNum"> 41</span> : }</span>
|
|
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC"> 20 : }</span></span>
|
|
<span id="L43"><span class="lineNum"> 43</span> <span class="tlaGNC"> 4 : std::vector<std::string> AODELd::graph(const std::string& name) const</span></span>
|
|
<span id="L44"><span class="lineNum"> 44</span> : {</span>
|
|
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 4 : return Ensemble::graph(name);</span></span>
|
|
<span id="L46"><span class="lineNum"> 46</span> : }</span>
|
|
<span id="L47"><span class="lineNum"> 47</span> : }</span>
|
|
</pre>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<br>
|
|
|
|
<table width="100%" border=0 cellspacing=0 cellpadding=0>
|
|
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
|
|
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
|
|
</table>
|
|
<br>
|
|
|
|
</body>
|
|
</html>
|