BayesNet/html/bayesnet/feature_selection/IWSS.cc.gcov.html

130 lines
10 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/feature_selection/IWSS.cc</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/feature_selection</a> - IWSS.cc<span style="font-size: 80%;"> (source / <a href="IWSS.cc.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">93.3&nbsp;%</td>
<td class="headerCovTableEntry">30</td>
<td class="headerCovTableEntry">28</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:59:18</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">2</td>
<td class="headerCovTableEntry">2</td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #include &lt;limits&gt;</span>
<span id="L8"><span class="lineNum"> 8</span> : #include &quot;bayesnet/utils/bayesnetUtils.h&quot;</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &quot;IWSS.h&quot;</span>
<span id="L10"><span class="lineNum"> 10</span> : namespace bayesnet {</span>
<span id="L11"><span class="lineNum"> 11</span> <span class="tlaGNC tlaBgGNC"> 62 : IWSS::IWSS(const torch::Tensor&amp; samples, const std::vector&lt;std::string&gt;&amp; features, const std::string&amp; className, const int maxFeatures, const int classNumStates, const torch::Tensor&amp; weights, const double threshold) :</span></span>
<span id="L12"><span class="lineNum"> 12</span> <span class="tlaGNC"> 62 : FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)</span></span>
<span id="L13"><span class="lineNum"> 13</span> : {</span>
<span id="L14"><span class="lineNum"> 14</span> <span class="tlaGNC"> 62 : if (threshold &lt; 0 || threshold &gt; .5) {</span></span>
<span id="L15"><span class="lineNum"> 15</span> <span class="tlaGNC"> 28 : throw std::invalid_argument(&quot;Threshold has to be in [0, 0.5]&quot;);</span></span>
<span id="L16"><span class="lineNum"> 16</span> : }</span>
<span id="L17"><span class="lineNum"> 17</span> <span class="tlaGNC"> 62 : }</span></span>
<span id="L18"><span class="lineNum"> 18</span> <span class="tlaGNC"> 34 : void IWSS::fit()</span></span>
<span id="L19"><span class="lineNum"> 19</span> : {</span>
<span id="L20"><span class="lineNum"> 20</span> <span class="tlaGNC"> 34 : initialize();</span></span>
<span id="L21"><span class="lineNum"> 21</span> <span class="tlaGNC"> 34 : computeSuLabels();</span></span>
<span id="L22"><span class="lineNum"> 22</span> <span class="tlaGNC"> 34 : auto featureOrder = argsort(suLabels); // sort descending order</span></span>
<span id="L23"><span class="lineNum"> 23</span> <span class="tlaGNC"> 34 : auto featureOrderCopy = featureOrder;</span></span>
<span id="L24"><span class="lineNum"> 24</span> : // Add first and second features to result</span>
<span id="L25"><span class="lineNum"> 25</span> : // First with its own score</span>
<span id="L26"><span class="lineNum"> 26</span> <span class="tlaGNC"> 34 : auto first_feature = pop_first(featureOrderCopy);</span></span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC"> 34 : selectedFeatures.push_back(first_feature);</span></span>
<span id="L28"><span class="lineNum"> 28</span> <span class="tlaGNC"> 34 : selectedScores.push_back(suLabels.at(first_feature));</span></span>
<span id="L29"><span class="lineNum"> 29</span> : // Second with the score of the candidates</span>
<span id="L30"><span class="lineNum"> 30</span> <span class="tlaGNC"> 34 : selectedFeatures.push_back(pop_first(featureOrderCopy));</span></span>
<span id="L31"><span class="lineNum"> 31</span> <span class="tlaGNC"> 34 : auto merit = computeMeritCFS();</span></span>
<span id="L32"><span class="lineNum"> 32</span> <span class="tlaGNC"> 34 : selectedScores.push_back(merit);</span></span>
<span id="L33"><span class="lineNum"> 33</span> <span class="tlaGNC"> 116 : for (const auto feature : featureOrderCopy) {</span></span>
<span id="L34"><span class="lineNum"> 34</span> <span class="tlaGNC"> 116 : selectedFeatures.push_back(feature);</span></span>
<span id="L35"><span class="lineNum"> 35</span> : // Compute merit with selectedFeatures</span>
<span id="L36"><span class="lineNum"> 36</span> <span class="tlaGNC"> 116 : auto meritNew = computeMeritCFS();</span></span>
<span id="L37"><span class="lineNum"> 37</span> <span class="tlaGNC"> 116 : double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;</span></span>
<span id="L38"><span class="lineNum"> 38</span> <span class="tlaGNC"> 116 : if (meritNew &gt; merit || delta &lt; threshold) {</span></span>
<span id="L39"><span class="lineNum"> 39</span> <span class="tlaGNC"> 82 : if (meritNew &gt; merit) {</span></span>
<span id="L40"><span class="lineNum"> 40</span> <span class="tlaUNC tlaBgUNC"> 0 : merit = meritNew;</span></span>
<span id="L41"><span class="lineNum"> 41</span> : }</span>
<span id="L42"><span class="lineNum"> 42</span> <span class="tlaGNC tlaBgGNC"> 82 : selectedScores.push_back(meritNew);</span></span>
<span id="L43"><span class="lineNum"> 43</span> : } else {</span>
<span id="L44"><span class="lineNum"> 44</span> <span class="tlaGNC"> 34 : selectedFeatures.pop_back();</span></span>
<span id="L45"><span class="lineNum"> 45</span> <span class="tlaGNC"> 34 : break;</span></span>
<span id="L46"><span class="lineNum"> 46</span> : }</span>
<span id="L47"><span class="lineNum"> 47</span> <span class="tlaGNC"> 82 : if (selectedFeatures.size() == maxFeatures) {</span></span>
<span id="L48"><span class="lineNum"> 48</span> <span class="tlaUNC tlaBgUNC"> 0 : break;</span></span>
<span id="L49"><span class="lineNum"> 49</span> : }</span>
<span id="L50"><span class="lineNum"> 50</span> : }</span>
<span id="L51"><span class="lineNum"> 51</span> <span class="tlaGNC tlaBgGNC"> 34 : fitted = true;</span></span>
<span id="L52"><span class="lineNum"> 52</span> <span class="tlaGNC"> 34 : }</span></span>
<span id="L53"><span class="lineNum"> 53</span> : }</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>