96 lines
3.9 KiB
C++
96 lines
3.9 KiB
C++
#include <catch2/catch_test_macros.hpp>
|
|
#include <catch2/catch_approx.hpp>
|
|
#include <catch2/generators/catch_generators.hpp>
|
|
#include "TestUtils.h"
|
|
#include "Folding.h"
|
|
|
|
TEST_CASE("KFold Test", "[Platform][KFold]")
|
|
{
|
|
// Initialize a KFold object with k=5 and a seed of 19.
|
|
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
|
auto raw = RawDatasets(file_name, true);
|
|
int nFolds = 5;
|
|
platform::KFold kfold(nFolds, raw.nSamples, 19);
|
|
int number = raw.nSamples * (kfold.getNumberOfFolds() - 1) / kfold.getNumberOfFolds();
|
|
|
|
SECTION("Number of Folds")
|
|
{
|
|
REQUIRE(kfold.getNumberOfFolds() == nFolds);
|
|
}
|
|
SECTION("Fold Test")
|
|
{
|
|
// Test each fold's size and contents.
|
|
for (int i = 0; i < nFolds; ++i) {
|
|
auto [train_indices, test_indices] = kfold.getFold(i);
|
|
bool result = train_indices.size() == number || train_indices.size() == number + 1;
|
|
REQUIRE(result);
|
|
REQUIRE(train_indices.size() + test_indices.size() == raw.nSamples);
|
|
}
|
|
}
|
|
}
|
|
|
|
map<int, int> counts(vector<int> y, vector<int> indices)
|
|
{
|
|
map<int, int> result;
|
|
for (auto i = 0; i < indices.size(); ++i) {
|
|
result[y[indices[i]]]++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
TEST_CASE("StratifiedKFold Test", "[Platform][StratifiedKFold]")
|
|
{
|
|
// Initialize a StratifiedKFold object with k=3, using the y vector, and a seed of 17.
|
|
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
|
int nFolds = GENERATE(3, 5, 10);
|
|
auto raw = RawDatasets(file_name, true);
|
|
platform::StratifiedKFold stratified_kfoldt(nFolds, raw.yt, 17);
|
|
platform::StratifiedKFold stratified_kfoldv(nFolds, raw.yv, 17);
|
|
int number = raw.nSamples * (stratified_kfoldt.getNumberOfFolds() - 1) / stratified_kfoldt.getNumberOfFolds();
|
|
|
|
SECTION("Stratified Number of Folds")
|
|
{
|
|
REQUIRE(stratified_kfoldt.getNumberOfFolds() == nFolds);
|
|
}
|
|
SECTION("Stratified Fold Test")
|
|
{
|
|
// Test each fold's size and contents.
|
|
auto counts = map<int, vector<int>>();
|
|
// Initialize the counts per Fold
|
|
for (int i = 0; i < nFolds; ++i) {
|
|
counts[i] = vector<int>(raw.classNumStates, 0);
|
|
}
|
|
// Check fold and compute counts of each fold
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
auto [train_indicest, test_indicest] = stratified_kfoldt.getFold(fold);
|
|
auto [train_indicesv, test_indicesv] = stratified_kfoldv.getFold(fold);
|
|
REQUIRE(train_indicest == train_indicesv);
|
|
REQUIRE(test_indicest == test_indicesv);
|
|
// In the worst case scenario, the number of samples in the training set is number + raw.classNumStates
|
|
// because in that fold can come one remainder sample from each class.
|
|
REQUIRE(train_indicest.size() <= number + raw.classNumStates);
|
|
// If the number of samples in any class is less than the number of folds, then the fold is faulty.
|
|
// and the number of samples in the training set + test set will be less than nSamples
|
|
if (!stratified_kfoldt.isFaulty()) {
|
|
REQUIRE(train_indicest.size() + test_indicest.size() == raw.nSamples);
|
|
} else {
|
|
REQUIRE(train_indicest.size() + test_indicest.size() <= raw.nSamples);
|
|
}
|
|
auto train_t = torch::tensor(train_indicest);
|
|
auto ytrain = raw.yt.index({ train_t });
|
|
// Check that the class labels have been equally assign to each fold
|
|
for (const auto& idx : train_indicest) {
|
|
counts[fold][raw.yt[idx].item<int>()]++;
|
|
}
|
|
}
|
|
// Test the fold counting of every class
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
for (int j = 1; j < nFolds - 1; ++j) {
|
|
for (int k = 0; k < raw.classNumStates; ++k) {
|
|
REQUIRE(abs(counts.at(fold).at(k) - counts.at(j).at(k)) <= 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|