396 lines
19 KiB
C++
396 lines
19 KiB
C++
// ***************************************************************
|
||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||
// SPDX-FileType: SOURCE
|
||
// SPDX-License-Identifier: MIT
|
||
// ***************************************************************
|
||
|
||
#include <set>
|
||
#include <functional>
|
||
#include <limits.h>
|
||
#include <tuple>
|
||
#include <folding.hpp>
|
||
#include "bayesnet/feature_selection/CFS.h"
|
||
#include "bayesnet/feature_selection/FCBF.h"
|
||
#include "bayesnet/feature_selection/IWSS.h"
|
||
#include "BoostAODE.h"
|
||
#include "lib/log/loguru.cpp"
|
||
|
||
namespace bayesnet {
|
||
|
||
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
|
||
{
|
||
validHyperparameters = {
|
||
"maxModels", "bisection", "order", "convergence", "convergence_best", "threshold",
|
||
"select_features", "maxTolerance", "predict_voting", "block_update"
|
||
};
|
||
|
||
}
|
||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||
{
|
||
// Models shall be built in trainModel
|
||
models.clear();
|
||
significanceModels.clear();
|
||
n_models = 0;
|
||
// Prepare the validation dataset
|
||
auto y_ = dataset.index({ -1, "..." });
|
||
if (convergence) {
|
||
// Prepare train & validation sets from train data
|
||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||
auto [train, test] = fold.getFold(0);
|
||
auto train_t = torch::tensor(train);
|
||
auto test_t = torch::tensor(test);
|
||
// Get train and validation sets
|
||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||
y_train = dataset.index({ -1, train_t });
|
||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||
y_test = dataset.index({ -1, test_t });
|
||
dataset = X_train;
|
||
m = X_train.size(1);
|
||
auto n_classes = states.at(className).size();
|
||
// Build dataset with train data
|
||
buildDataset(y_train);
|
||
metrics = Metrics(dataset, features, className, n_classes);
|
||
} else {
|
||
// Use all data to train
|
||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||
y_train = y_;
|
||
}
|
||
}
|
||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||
{
|
||
auto hyperparameters = hyperparameters_;
|
||
if (hyperparameters.contains("order")) {
|
||
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||
order_algorithm = hyperparameters["order"];
|
||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||
}
|
||
hyperparameters.erase("order");
|
||
}
|
||
if (hyperparameters.contains("convergence")) {
|
||
convergence = hyperparameters["convergence"];
|
||
hyperparameters.erase("convergence");
|
||
}
|
||
if (hyperparameters.contains("convergence_best")) {
|
||
convergence_best = hyperparameters["convergence_best"];
|
||
hyperparameters.erase("convergence_best");
|
||
}
|
||
if (hyperparameters.contains("bisection")) {
|
||
bisection = hyperparameters["bisection"];
|
||
hyperparameters.erase("bisection");
|
||
}
|
||
if (hyperparameters.contains("threshold")) {
|
||
threshold = hyperparameters["threshold"];
|
||
hyperparameters.erase("threshold");
|
||
}
|
||
if (hyperparameters.contains("maxTolerance")) {
|
||
maxTolerance = hyperparameters["maxTolerance"];
|
||
if (maxTolerance < 1 || maxTolerance > 4)
|
||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
||
hyperparameters.erase("maxTolerance");
|
||
}
|
||
if (hyperparameters.contains("predict_voting")) {
|
||
predict_voting = hyperparameters["predict_voting"];
|
||
hyperparameters.erase("predict_voting");
|
||
}
|
||
if (hyperparameters.contains("select_features")) {
|
||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
||
selectFeatures = true;
|
||
select_features_algorithm = selectedAlgorithm;
|
||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||
}
|
||
hyperparameters.erase("select_features");
|
||
}
|
||
if (hyperparameters.contains("block_update")) {
|
||
block_update = hyperparameters["block_update"];
|
||
hyperparameters.erase("block_update");
|
||
}
|
||
Classifier::setHyperparameters(hyperparameters);
|
||
}
|
||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||
{
|
||
bool terminate = false;
|
||
double alpha_t = 0;
|
||
auto mask_wrong = ypred != ytrain;
|
||
auto mask_right = ypred == ytrain;
|
||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||
double epsilon_t = masked_weights.sum().item<double>();
|
||
if (epsilon_t > 0.5) {
|
||
// Inverse the weights policy (plot ln(wt))
|
||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||
terminate = true;
|
||
} else {
|
||
double wt = (1 - epsilon_t) / epsilon_t;
|
||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||
// Step 3.2: Update weights for next classifier
|
||
// Step 3.2.1: Update weights of wrong samples
|
||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||
// Step 3.2.2: Update weights of right samples
|
||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||
// Step 3.3: Normalise the weights
|
||
double totalWeights = torch::sum(weights).item<double>();
|
||
weights = weights / totalWeights;
|
||
}
|
||
return { weights, alpha_t, terminate };
|
||
}
|
||
std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||
{
|
||
/* Update Block algorithm
|
||
k = # of models in block
|
||
n_models = # of models in ensemble to make predictions
|
||
n_models_bak = # models saved
|
||
models = vector of models to make predictions
|
||
models_bak = models not used to make predictions
|
||
significances_bak = backup of significances vector
|
||
|
||
Case list
|
||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||
B) k = 1, n_models = n + 1 => n_models = n + k
|
||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||
E) k > 1, n_models = k + n => n_models = n + k
|
||
|
||
A, D) n=0, k > 0, n_models == k
|
||
1. n_models_bak <- n_models
|
||
2. significances_bak <- significances
|
||
3. significances = vector(k, 1)
|
||
4. Don’t move any classifiers out of models
|
||
5. n_models <- k
|
||
6. Make prediction, compute alpha, update weights
|
||
7. Don’t restore any classifiers to models
|
||
8. significances <- significances_bak
|
||
9. Update last k significances
|
||
10. n_models <- n_models_bak
|
||
|
||
B, C, E) n > 0, k > 0, n_models == n + k
|
||
1. n_models_bak <- n_models
|
||
2. significances_bak <- significances
|
||
3. significances = vector(k, 1)
|
||
4. Move first n classifiers to models_bak
|
||
5. n_models <- k
|
||
6. Make prediction, compute alpha, update weights
|
||
7. Insert classifiers in models_bak to be the first n models
|
||
8. significances <- significances_bak
|
||
9. Update last k significances
|
||
10. n_models <- n_models_bak
|
||
*/
|
||
//
|
||
// Make predict with only the last k models
|
||
//
|
||
std::unique_ptr<Classifier> model;
|
||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||
auto significance_bak = significanceModels;
|
||
auto n_models_bak = n_models;
|
||
// 3. significances = vector(k, 1)
|
||
significanceModels = std::vector<double>(k, 1.0);
|
||
// 4. Move first n classifiers to models_bak
|
||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||
for (int i = 0; i < n_models - k; ++i) {
|
||
model = std::move(models[0]);
|
||
models.erase(models.begin());
|
||
models_bak.push_back(std::move(model));
|
||
}
|
||
assert(models.size() == k);
|
||
// 5. n_models <- k
|
||
n_models = k;
|
||
// 6. Make prediction, compute alpha, update weights
|
||
auto ypred = predict(X_train);
|
||
//
|
||
// Update weights
|
||
//
|
||
double alpha_t;
|
||
bool terminate;
|
||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||
//
|
||
// Restore the models if needed
|
||
//
|
||
// 7. Insert classifiers in models_bak to be the first n models
|
||
// if n_models_bak == k, don't restore any, because none of them were moved
|
||
if (k != n_models_bak) {
|
||
// Insert in the same order as they were extracted
|
||
int bak_size = models_bak.size();
|
||
for (int i = 0; i < bak_size; ++i) {
|
||
model = std::move(models_bak[bak_size - 1 - i]);
|
||
models_bak.erase(models_bak.end() - 1);
|
||
models.insert(models.begin(), std::move(model));
|
||
}
|
||
}
|
||
// 8. significances <- significances_bak
|
||
significanceModels = significance_bak;
|
||
//
|
||
// Update the significance of the last k models
|
||
//
|
||
// 9. Update last k significances
|
||
for (int i = 0; i < k; ++i) {
|
||
significanceModels[n_models_bak - k + i] = alpha_t;
|
||
}
|
||
// 10. n_models <- n_models_bak
|
||
n_models = n_models_bak;
|
||
return { weights, alpha_t, terminate };
|
||
}
|
||
std::vector<int> BoostAODE::initializeModels()
|
||
{
|
||
std::vector<int> featuresUsed;
|
||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||
int maxFeatures = 0;
|
||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||
if (threshold < 0 || threshold >0.5) {
|
||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||
}
|
||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||
if (threshold < 1e-7 || threshold > 1) {
|
||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||
}
|
||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||
}
|
||
featureSelector->fit();
|
||
auto cfsFeatures = featureSelector->getFeatures();
|
||
auto scores = featureSelector->getScores();
|
||
for (const int& feature : cfsFeatures) {
|
||
featuresUsed.push_back(feature);
|
||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||
model->fit(dataset, features, className, states, weights_);
|
||
models.push_back(std::move(model));
|
||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||
n_models++;
|
||
}
|
||
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||
delete featureSelector;
|
||
return featuresUsed;
|
||
}
|
||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||
{
|
||
//
|
||
// Logging setup
|
||
//
|
||
loguru::set_thread_name("BoostAODE");
|
||
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||
loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||
|
||
// Algorithm based on the adaboost algorithm for classification
|
||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||
fitted = true;
|
||
double alpha_t = 0;
|
||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||
bool finished = false;
|
||
std::vector<int> featuresUsed;
|
||
if (selectFeatures) {
|
||
featuresUsed = initializeModels();
|
||
auto ypred = predict(X_train);
|
||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||
// Update significance of the models
|
||
for (int i = 0; i < n_models; ++i) {
|
||
significanceModels[i] = alpha_t;
|
||
}
|
||
if (finished) {
|
||
return;
|
||
}
|
||
}
|
||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||
// Variables to control the accuracy finish condition
|
||
double priorAccuracy = 0.0;
|
||
double improvement = 1.0;
|
||
double convergence_threshold = 1e-4;
|
||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||
// Step 0: Set the finish condition
|
||
// epsilon sub t > 0.5 => inverse the weights policy
|
||
// validation error is not decreasing
|
||
// run out of features
|
||
bool ascending = order_algorithm == Orders.ASC;
|
||
std::mt19937 g{ 173 };
|
||
while (!finished) {
|
||
// Step 1: Build ranking with mutual information
|
||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||
if (order_algorithm == Orders.RAND) {
|
||
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||
}
|
||
// Remove used features
|
||
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
|
||
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
||
end(featureSelection)
|
||
);
|
||
int k = bisection ? pow(2, tolerance) : 1;
|
||
int counter = 0; // The model counter of the current pack
|
||
VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||
while (counter++ < k && featureSelection.size() > 0) {
|
||
auto feature = featureSelection[0];
|
||
featureSelection.erase(featureSelection.begin());
|
||
std::unique_ptr<Classifier> model;
|
||
model = std::make_unique<SPODE>(feature);
|
||
model->fit(dataset, features, className, states, weights_);
|
||
alpha_t = 0.0;
|
||
if (!block_update) {
|
||
auto ypred = model->predict(X_train);
|
||
// Step 3.1: Compute the classifier amout of say
|
||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||
}
|
||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||
numItemsPack++;
|
||
featuresUsed.push_back(feature);
|
||
models.push_back(std::move(model));
|
||
significanceModels.push_back(alpha_t);
|
||
n_models++;
|
||
VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||
}
|
||
if (block_update) {
|
||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||
}
|
||
if (convergence && !finished) {
|
||
auto y_val_predict = predict(X_test);
|
||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||
if (priorAccuracy == 0) {
|
||
priorAccuracy = accuracy;
|
||
} else {
|
||
improvement = accuracy - priorAccuracy;
|
||
}
|
||
if (improvement < convergence_threshold) {
|
||
VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||
tolerance++;
|
||
} else {
|
||
VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||
tolerance = 0; // Reset the counter if the model performs better
|
||
numItemsPack = 0;
|
||
}
|
||
if (convergence_best) {
|
||
// Keep the best accuracy until now as the prior accuracy
|
||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||
} else {
|
||
// Keep the last accuray obtained as the prior accuracy
|
||
priorAccuracy = accuracy;
|
||
}
|
||
}
|
||
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||
}
|
||
if (tolerance > maxTolerance) {
|
||
if (numItemsPack < n_models) {
|
||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||
VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||
for (int i = 0; i < numItemsPack; ++i) {
|
||
significanceModels.pop_back();
|
||
models.pop_back();
|
||
n_models--;
|
||
}
|
||
} else {
|
||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||
}
|
||
}
|
||
if (featuresUsed.size() != features.size()) {
|
||
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
|
||
status = WARNING;
|
||
}
|
||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||
}
|
||
std::vector<std::string> BoostAODE::graph(const std::string& title) const
|
||
{
|
||
return Ensemble::graph(title);
|
||
}
|
||
} |