// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include "TAN.h" namespace bayesnet { TAN::TAN() : Classifier(Network()) {} void TAN::buildModel(const torch::Tensor& weights) { // 0. Add all nodes to the model addNodes(); // 1. Compute mutual information between each feature and the class and set the root node // as the highest mutual information with the class auto mi = std::vector >(); torch::Tensor class_dataset = dataset.index({ -1, "..." }); for (int i = 0; i < static_cast(features.size()); ++i) { torch::Tensor feature_dataset = dataset.index({ i, "..." }); auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights); mi.push_back({ i, mi_value }); } sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;}); auto root = mi[mi.size() - 1].first; // 2. Compute mutual information between each feature and the class auto weights_matrix = metrics.conditionalEdge(weights); // 3. Compute the maximum spanning tree auto mst = metrics.maximumSpanningTree(features, weights_matrix, root); // 4. Add edges from the maximum spanning tree to the model for (auto i = 0; i < mst.size(); ++i) { auto [from, to] = mst[i]; model.addEdge(features[from], features[to]); } // 5. Add edges from the class to all features for (auto feature : features) { model.addEdge(className, feature); } } std::vector TAN::graph(const std::string& title) const { return model.graph(title); } }