// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include "KDBLd.h" namespace bayesnet { KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {} KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector& features_, const std::string& className_, map>& states_, const Smoothing_t smoothing) { checkInput(X_, y_); features = features_; className = className_; Xf = X_; y = y_; // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y states = fit_local_discretization(y); // We have discretized the input data // 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network KDB::fit(dataset, features, className, states, smoothing); states = localDiscretizationProposal(states, model); return *this; } torch::Tensor KDBLd::predict(torch::Tensor& X) { auto Xt = prepareX(X); return KDB::predict(Xt); } std::vector KDBLd::graph(const std::string& name) const { return KDB::graph(name); } }