#include #include #include #include "BayesMetrics.h" #include "TestUtils.h" using namespace std; TEST_CASE("Metrics Test", "[BayesNet]") { string file_name = GENERATE("glass", "iris", "ecoli", "diabetes"); map>> resultsKBest = { {"glass", {7, { 0, 1, 7, 6, 3, 5, 2 }}}, {"iris", {3, { 0, 3, 2 }} }, {"ecoli", {6, { 2, 4, 1, 0, 6, 5 }}}, {"diabetes", {2, { 7, 1 }}} }; map resultsMI = { {"glass", 0.12805398}, {"iris", 0.3158139948}, {"ecoli", 0.0089431099}, {"diabetes", 0.0345470614} }; map>> resultsMST = { {"glass", {{0,6}, {0,5}, {0,3}, {5,1}, {5,8}, {6,2}, {6,7}, {7,4}}}, {"iris", {{0,1},{0,2},{1,3}}}, {"ecoli", {{0,1}, {0,2}, {1,5}, {1,3}, {5,6}, {5,4}}}, {"diabetes", {{0,7}, {0,2}, {0,6}, {2,3}, {3,4}, {3,5}, {4,1}}} }; auto [XDisc, yDisc, featuresDisc, classNameDisc, statesDisc] = loadDataset(file_name, true, true); int classNumStates = statesDisc.at(classNameDisc).size(); auto yresized = torch::transpose(yDisc.view({ yDisc.size(0), 1 }), 0, 1); torch::Tensor dataset = torch::cat({ XDisc, yresized }, 0); int nSamples = dataset.size(1); double epsilon = 1e-5; torch::Tensor weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble); bayesnet::Metrics metrics(dataset, featuresDisc, classNameDisc, classNumStates); SECTION("Test Constructor") { REQUIRE(metrics.getScoresKBest().size() == 0); } SECTION("Test SelectKBestWeighted") { vector kBest = metrics.SelectKBestWeighted(weights, true, resultsKBest.at(file_name).first); REQUIRE(kBest.size() == resultsKBest.at(file_name).first); REQUIRE(kBest == resultsKBest.at(file_name).second); } SECTION("Test Mutual Information") { auto result = metrics.mutualInformation(dataset.index({ 1, "..." }), dataset.index({ 2, "..." }), weights); REQUIRE(result == Catch::Approx(resultsMI.at(file_name)).epsilon(epsilon)); } SECTION("Test Maximum Spanning Tree") { auto weights_matrix = metrics.conditionalEdge(weights); auto result = metrics.maximumSpanningTree(featuresDisc, weights_matrix, 0); REQUIRE(result == resultsMST.at(file_name)); } }