#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do #include #include #include #include #include #include #include "KDB.h" #include "TAN.h" #include "SPODE.h" #include "AODE.h" #include "BoostAODE.h" #include "TANLd.h" #include "KDBLd.h" #include "SPODELd.h" #include "AODELd.h" #include "TestUtils.h" TEST_CASE("Library check version", "[BayesNet]") { auto clf = bayesnet::KDB(2); REQUIRE(clf.getVersion() == "1.0.2"); } TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]") { map , float> scores = { // Diabetes {{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615}, {{"diabetes", "AODELd"}, 0.8138f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.78646f}, {{"diabetes", "TANLd"}, 0.8099f}, {{"diabetes", "BoostAODE"}, 0.83984f}, // Ecoli {{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857}, {{"ecoli", "AODELd"}, 0.8869f}, {{"ecoli", "KDBLd"}, 0.875f}, {{"ecoli", "SPODELd"}, 0.84226f}, {{"ecoli", "TANLd"}, 0.86905f}, {{"ecoli", "BoostAODE"}, 0.89583f}, // Glass {{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103}, {{"glass", "AODELd"}, 0.79439f}, {{"glass", "KDBLd"}, 0.85047f}, {{"glass", "SPODELd"}, 0.79439f}, {{"glass", "TANLd"}, 0.86449f}, {{"glass", "BoostAODE"}, 0.84579f}, // Iris {{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333}, {{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f} }; std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes"); auto raw = RawDatasets(file_name, false); SECTION("Test TAN classifier (" + file_name + ")") { auto clf = bayesnet::TAN(); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); auto score = clf.score(raw.Xv, raw.yv); //scores[{file_name, "TAN"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(raw.epsilon)); } SECTION("Test TANLd classifier (" + file_name + ")") { auto clf = bayesnet::TANLd(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); //scores[{file_name, "TANLd"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "TANLd"}]).epsilon(raw.epsilon)); } SECTION("Test KDB classifier (" + file_name + ")") { auto clf = bayesnet::KDB(2); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); auto score = clf.score(raw.Xv, raw.yv); //scores[{file_name, "KDB"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "KDB" }]).epsilon(raw.epsilon)); } SECTION("Test KDBLd classifier (" + file_name + ")") { auto clf = bayesnet::KDBLd(2); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); //scores[{file_name, "KDBLd"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "KDBLd" }]).epsilon(raw.epsilon)); } SECTION("Test SPODE classifier (" + file_name + ")") { auto clf = bayesnet::SPODE(1); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); auto score = clf.score(raw.Xv, raw.yv); // scores[{file_name, "SPODE"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(raw.epsilon)); } SECTION("Test SPODELd classifier (" + file_name + ")") { auto clf = bayesnet::SPODELd(1); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); // scores[{file_name, "SPODELd"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "SPODELd"}]).epsilon(raw.epsilon)); } SECTION("Test AODE classifier (" + file_name + ")") { auto clf = bayesnet::AODE(); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); auto score = clf.score(raw.Xv, raw.yv); // scores[{file_name, "AODE"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(raw.epsilon)); } SECTION("Test AODELd classifier (" + file_name + ")") { auto clf = bayesnet::AODELd(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); // scores[{file_name, "AODELd"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "AODELd"}]).epsilon(raw.epsilon)); } SECTION("Test BoostAODE classifier (" + file_name + ")") { auto clf = bayesnet::BoostAODE(true); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); auto score = clf.score(raw.Xv, raw.yv); // scores[{file_name, "BoostAODE"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "BoostAODE"}]).epsilon(raw.epsilon)); } // for (auto scores : scores) { // std::cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, "; // } } TEST_CASE("Models features", "[BayesNet]") { auto graph = std::vector({ "digraph BayesNet {\nlabel=\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n", "class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n", "class -> sepallength", "class -> sepalwidth", "class -> petallength", "class -> petalwidth", "petallength [shape=circle] \n", "petallength -> sepallength", "petalwidth [shape=circle] \n", "sepallength [shape=circle] \n", "sepallength -> sepalwidth", "sepalwidth [shape=circle] \n", "sepalwidth -> petalwidth", "}\n" } ); auto raw = RawDatasets("iris", true); auto clf = bayesnet::TAN(); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); REQUIRE(clf.getNumberOfNodes() == 5); REQUIRE(clf.getNumberOfEdges() == 7); REQUIRE(clf.getNumberOfStates() == 19); REQUIRE(clf.getClassNumStates() == 3); REQUIRE(clf.show() == std::vector{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "}); REQUIRE(clf.graph("Test") == graph); } TEST_CASE("Get num features & num edges", "[BayesNet]") { auto raw = RawDatasets("iris", true); auto clf = bayesnet::KDB(2); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); REQUIRE(clf.getNumberOfNodes() == 5); REQUIRE(clf.getNumberOfEdges() == 8); } TEST_CASE("BoostAODE feature_select CFS", "[BayesNet]") { auto raw = RawDatasets("glass", true); auto clf = bayesnet::BoostAODE(); clf.setHyperparameters({ {"select_features", "CFS"} }); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); REQUIRE(clf.getNumberOfNodes() == 90); REQUIRE(clf.getNumberOfEdges() == 153); REQUIRE(clf.getNotes().size() == 2); REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS"); REQUIRE(clf.getNotes()[1] == "Number of models: 9"); } TEST_CASE("BoostAODE test used features in train note and score", "[BayesNet]") { auto raw = RawDatasets("diabetes", true); auto clf = bayesnet::BoostAODE(true); clf.setHyperparameters({ {"ascending",true}, {"convergence", true}, {"repeatSparent",true}, {"select_features","CFS"}, }); clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); REQUIRE(clf.getNumberOfNodes() == 72); REQUIRE(clf.getNumberOfEdges() == 120); REQUIRE(clf.getNotes().size() == 3); REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS"); REQUIRE(clf.getNotes()[1] == "Used features in train: 7 of 8"); REQUIRE(clf.getNotes()[2] == "Number of models: 8"); auto score = clf.score(raw.Xv, raw.yv); auto scoret = clf.score(raw.Xt, raw.yt); REQUIRE(score == Catch::Approx(0.8138).epsilon(raw.epsilon)); REQUIRE(scoret == Catch::Approx(0.8138).epsilon(raw.epsilon)); } TEST_CASE("Model predict_proba", "[BayesNet]") { std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting"); auto res_prob_tan = std::vector>({ { 0.00375671, 0.994457, 0.00178621 }, { 0.00137462, 0.992734, 0.00589123 }, { 0.00137462, 0.992734, 0.00589123 }, { 0.00137462, 0.992734, 0.00589123 }, { 0.00218225, 0.992877, 0.00494094 }, { 0.00494209, 0.0978534, 0.897205 }, { 0.0054192, 0.974275, 0.0203054 }, { 0.00433012, 0.985054, 0.0106159 }, { 0.000860806, 0.996922, 0.00221698 } }); auto res_prob_spode = std::vector>({ {0.00419032, 0.994247, 0.00156265}, {0.00172808, 0.993433, 0.00483862}, {0.00172808, 0.993433, 0.00483862}, {0.00172808, 0.993433, 0.00483862}, {0.00279211, 0.993737, 0.00347077}, {0.0120674, 0.357909, 0.630024}, {0.00386239, 0.913919, 0.0822185}, {0.0244389, 0.966447, 0.00911374}, {0.003135, 0.991799, 0.0050661} }); auto res_prob_baode = std::vector>({ {0.00803291, 0.9676, 0.0243672}, {0.00398714, 0.945126, 0.050887}, {0.00398714, 0.945126, 0.050887}, {0.00398714, 0.945126, 0.050887}, {0.00189227, 0.859575, 0.138533}, {0.0118341, 0.442149, 0.546017}, {0.0216135, 0.785781, 0.192605}, {0.0204803, 0.844276, 0.135244}, {0.00576313, 0.961665, 0.0325716}, }); auto res_prob_voting = std::vector>({ {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0.447909, 0.552091}, {0, 0.811482, 0.188517}, {0, 1, 0}, {0, 1, 0} }); std::map>> res_prob = { {"TAN", res_prob_tan}, {"SPODE", res_prob_spode} , {"BoostAODEproba", res_prob_baode }, {"BoostAODEvoting", res_prob_voting } }; std::map models = { {"TAN", new bayesnet::TAN()}, {"SPODE", new bayesnet::SPODE(0)}, {"BoostAODEproba", new bayesnet::BoostAODE(false)}, {"BoostAODEvoting", new bayesnet::BoostAODE(true)} }; int init_index = 78; auto raw = RawDatasets("iris", true); SECTION("Test " + model + " predict_proba") { auto clf = models[model]; clf->fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); auto y_pred_proba = clf->predict_proba(raw.Xv); auto y_pred = clf->predict(raw.Xv); auto yt_pred = clf->predict(raw.Xt); auto yt_pred_proba = clf->predict_proba(raw.Xt); REQUIRE(y_pred.size() == yt_pred.size(0)); REQUIRE(y_pred.size() == y_pred_proba.size()); REQUIRE(y_pred.size() == yt_pred_proba.size(0)); REQUIRE(y_pred.size() == raw.yv.size()); REQUIRE(y_pred_proba[0].size() == 3); REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size()); for (int i = 0; i < y_pred_proba.size(); ++i) { auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end()); int predictedClass = distance(y_pred_proba[i].begin(), maxElem); REQUIRE(predictedClass == y_pred[i]); // Check predict is coherent with predict_proba REQUIRE(yt_pred_proba[i].argmax().item() == y_pred[i]); } // Check predict_proba values for vectors and tensors for (int i = 0; i < res_prob.size(); i++) { REQUIRE(y_pred[i] == yt_pred[i].item()); for (int j = 0; j < 3; j++) { REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon)); REQUIRE(res_prob[model][i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item()).epsilon(raw.epsilon)); } } delete clf; } }