#include "AODELd.h" namespace bayesnet { AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className) { validHyperparameters = { "predict_voting" }; } void AODELd::setHyperparameters(const nlohmann::json& hyperparameters_) { auto hyperparameters = hyperparameters_; if (hyperparameters.contains("predict_voting")) { predict_voting = hyperparameters["predict_voting"]; hyperparameters.erase("predict_voting"); } if (!hyperparameters.empty()) { throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump()); } } AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector& features_, const std::string& className_, map>& states_) { checkInput(X_, y_); features = features_; className = className_; Xf = X_; y = y_; // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y states = fit_local_discretization(y); // We have discretized the input data // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network Ensemble::fit(dataset, features, className, states); return *this; } void AODELd::buildModel(const torch::Tensor& weights) { models.clear(); for (int i = 0; i < features.size(); ++i) { models.push_back(std::make_unique(i)); } n_models = models.size(); significanceModels = std::vector(n_models, 1.0); } void AODELd::trainModel(const torch::Tensor& weights) { for (const auto& model : models) { model->fit(Xf, y, features, className, states); } } std::vector AODELd::graph(const std::string& name) const { return Ensemble::graph(name); } }