// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include "TANLd.h" namespace bayesnet { TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {} TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector& features_, const std::string& className_, map>& states_) { checkInput(X_, y_); features = features_; className = className_; Xf = X_; y = y_; // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y states = fit_local_discretization(y); // We have discretized the input data // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network TAN::fit(dataset, features, className, states); states = localDiscretizationProposal(states, model); return *this; } torch::Tensor TANLd::predict(torch::Tensor& X) { auto Xt = prepareX(X); return TAN::predict(Xt); } std::vector TANLd::graph(const std::string& name) const { return TAN::graph(name); } }