# Algorithm - // notation - $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$ - $m$ instances. - $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$ - $W$ a weights vector. $W_0$ are the initial weights. - $D[W]$ dataset with weights $W$ for the instances. 1. // initialization 2. $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$ 3. $W \leftarrow W_0$ 4. $Vars \leftarrow {\cal{X}}$ 5. $\delta \leftarrow 10^{-4}$ 6. $convergence \leftarrow True$ // hyperparameter 7. $maxTolerancia \leftarrow 3$ // hyperparameter 8. $bisection \leftarrow False$ // hyperparameter 9. $finished \leftarrow False$ 10. $AODE \leftarrow \emptyset$ // the ensemble 11. $tolerance \leftarrow 0$ 12. $numModelsInPack \leftarrow 0$ 13. $maxAccuracy \leftarrow -1$ 14. 15. // main loop 16. While $(\lnot finished)$ 1. $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$ 2. $k \leftarrow 2^{tolerance}$ 3. if ($tolerance == 0$) $numItemsPack \leftarrow0$ 4. $P \leftarrow Head(\pi,k)$ // first k features in order 5. $spodes \leftarrow \emptyset$ 6. $i \leftarrow 0$ 7. While ($i < size(P)$) 1. $X \leftarrow P[i]$ 2. $i \leftarrow i + 1$ 3. $numItemsPack \leftarrow numItemsPack + 1$ 4. $Vars.remove(X)$ 5. $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$ 6. $\hat{y}[] \leftarrow spode.Predict(D[W])$ 7. $\epsilon \leftarrow error(\hat{y}[], y[])$ 8. $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$ 9. if ($\epsilon > 0.5$) 1. $finished \leftarrow True$ 2. break 10. $spodes.add( (spode,\alpha_t) )$ 11. $W \leftarrow UpdateWeights(D[W],\alpha,y[],\hat{y}[])$ 8. $AODE.add( spodes )$ 9. if ($convergence \land \lnot finished$) 1. $\hat{y}[] \leftarrow AODE.Predict(D[W])$ 2. $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$ 3. $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$ 4. if $((accuracy - maxAccuracy) < \delta)$ // result doesn't improve enough 1. $tolerance \leftarrow tolerance + 1$ 5. else 1. $tolerance \leftarrow 0$ 2. $numItemsPack \leftarrow 0$ 10. If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$ 11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$ 17. if ($tolerance > maxTolerance$) // algorithm finished because of lack of convergence 1. $removeModels(AODE, numItemsPack)$ 18. Return $AODE$