#include #include #include #include #include #include #include "ArffFiles.h" #include "BayesMetrics.h" #include "CPPFImdlp.h" #include "Folding.h" #include "Models.h" #include "modelRegister.h" #include const std::string PATH = "../../data/"; pair, map> discretize(std::vector& X, mdlp::labels_t& y, std::vector features) { std::vectorXd; map maxes; auto fimdlp = mdlp::CPPFImdlp(); for (int i = 0; i < X.size(); i++) { fimdlp.fit(X[i], y); mdlp::labels_t& xd = fimdlp.transform(X[i]); maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1; Xd.push_back(xd); } return { Xd, maxes }; } bool file_exists(const std::string& name) { if (FILE* file = fopen(name.c_str(), "r")) { fclose(file); return true; } else { return false; } } pair>, std::vector> extract_indices(std::vector indices, std::vector> X, std::vector y) { std::vector> Xr; // nxm std::vector yr; for (int col = 0; col < X.size(); ++col) { Xr.push_back(std::vector()); } for (auto index : indices) { for (int col = 0; col < X.size(); ++col) { Xr[col].push_back(X[col][index]); } yr.push_back(y[index]); } return { Xr, yr }; } int main(int argc, char** argv) { map datasets = { {"diabetes", true}, {"ecoli", true}, {"glass", true}, {"iris", true}, {"kdd_JapaneseVowels", false}, {"letter", true}, {"liver-disorders", true}, {"mfeat-factors", true}, }; auto valid_datasets = std::vector(); transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets), [](const pair& pair) { return pair.first; }); argparse::ArgumentParser program("BayesNetSample"); program.add_argument("-d", "--dataset") .help("Dataset file name") .action([valid_datasets](const std::string& value) { if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) { return value; } throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}"); } ); program.add_argument("-p", "--path") .help(" folder where the data files are located, default") .default_value(std::string{ PATH } ); program.add_argument("-m", "--model") .help("Model to use " + platform::Models::instance()->tostring()) .action([](const std::string& value) { static const std::vector choices = platform::Models::instance()->getNames(); if (find(choices.begin(), choices.end(), value) != choices.end()) { return value; } throw runtime_error("Model must be one of " + platform::Models::instance()->tostring()); } ); program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true); program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true); program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true); program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true); program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) { try { auto k = stoi(value); if (k < 2) { throw runtime_error("Number of folds must be greater than 1"); } return k; } catch (const runtime_error& err) { throw runtime_error(err.what()); } catch (...) { throw runtime_error("Number of folds must be an integer"); }}); program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>(); bool class_last, stratified, tensors, dump_cpt; std::string model_name, file_name, path, complete_file_name; int nFolds, seed; try { program.parse_args(argc, argv); file_name = program.get("dataset"); path = program.get("path"); model_name = program.get("model"); complete_file_name = path + file_name + ".arff"; stratified = program.get("stratified"); tensors = program.get("tensors"); nFolds = program.get("folds"); seed = program.get("seed"); dump_cpt = program.get("dumpcpt"); class_last = datasets[file_name]; if (!file_exists(complete_file_name)) { throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist"); } } catch (const exception& err) { cerr << err.what() << std::endl; cerr << program; exit(1); } /* * Begin Processing */ auto handler = ArffFiles(); handler.load(complete_file_name, class_last); // Get Dataset X, y std::vector& X = handler.getX(); mdlp::labels_t& y = handler.getY(); // Get className & Features auto className = handler.getClassName(); std::vector features; auto attributes = handler.getAttributes(); transform(attributes.begin(), attributes.end(), back_inserter(features), [](const pair& item) { return item.first; }); // Discretize Dataset auto [Xd, maxes] = discretize(X, y, features); maxes[className] = *max_element(y.begin(), y.end()) + 1; map> states; for (auto feature : features) { states[feature] = std::vector(maxes[feature]); } states[className] = std::vector(maxes[className]); auto clf = platform::Models::instance()->create(model_name); clf->fit(Xd, y, features, className, states); if (dump_cpt) { std::cout << "--- CPT Tables ---" << std::endl; clf->dump_cpt(); } auto lines = clf->show(); for (auto line : lines) { std::cout << line << std::endl; } std::cout << "--- Topological Order ---" << std::endl; auto order = clf->topological_order(); for (auto name : order) { std::cout << name << ", "; } std::cout << "end." << std::endl; auto score = clf->score(Xd, y); std::cout << "Score: " << score << std::endl; auto graph = clf->graph(); auto dot_file = model_name + "_" + file_name; ofstream file(dot_file + ".dot"); file << graph; file.close(); std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl; std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl; std::string stratified_string = stratified ? " Stratified" : ""; std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl; std::cout << "==========================================" << std::endl; torch::Tensor Xt = torch::zeros({ static_cast(Xd.size()), static_cast(Xd[0].size()) }, torch::kInt32); torch::Tensor yt = torch::tensor(y, torch::kInt32); for (int i = 0; i < features.size(); ++i) { Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32)); } float total_score = 0, total_score_train = 0, score_train, score_test; platform::Fold* fold; if (stratified) fold = new platform::StratifiedKFold(nFolds, y, seed); else fold = new platform::KFold(nFolds, y.size(), seed); for (auto i = 0; i < nFolds; ++i) { auto [train, test] = fold->getFold(i); std::cout << "Fold: " << i + 1 << std::endl; if (tensors) { auto ttrain = torch::tensor(train, torch::kInt64); auto ttest = torch::tensor(test, torch::kInt64); torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain); torch::Tensor ytraint = yt.index({ ttrain }); torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest); torch::Tensor ytestt = yt.index({ ttest }); clf->fit(Xtraint, ytraint, features, className, states); auto temp = clf->predict(Xtraint); score_train = clf->score(Xtraint, ytraint); score_test = clf->score(Xtestt, ytestt); } else { auto [Xtrain, ytrain] = extract_indices(train, Xd, y); auto [Xtest, ytest] = extract_indices(test, Xd, y); clf->fit(Xtrain, ytrain, features, className, states); score_train = clf->score(Xtrain, ytrain); score_test = clf->score(Xtest, ytest); } if (dump_cpt) { std::cout << "--- CPT Tables ---" << std::endl; clf->dump_cpt(); } total_score_train += score_train; total_score += score_test; std::cout << "Score Train: " << score_train << std::endl; std::cout << "Score Test : " << score_test << std::endl; std::cout << "-------------------------------------------------------------------------------" << std::endl; } std::cout << "**********************************************************************************" << std::endl; std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl; std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0; }