// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include #include #include #include #include #include "bayesnet/classifiers/KDB.h" #include "bayesnet/classifiers/TAN.h" #include "bayesnet/classifiers/SPODE.h" #include "bayesnet/classifiers/TANLd.h" #include "bayesnet/classifiers/KDBLd.h" #include "bayesnet/classifiers/SPODELd.h" #include "bayesnet/ensembles/AODE.h" #include "bayesnet/ensembles/AODELd.h" #include "bayesnet/ensembles/BoostAODE.h" #include "TestUtils.h" const std::string ACTUAL_VERSION = "1.0.6"; TEST_CASE("Test Bayesian Classifiers score & version", "[Models]") { map , float> scores{ // Diabetes {{"diabetes", "AODE"}, 0.82161}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615}, {{"diabetes", "AODELd"}, 0.8125f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.7890625f}, {{"diabetes", "TANLd"}, 0.803385437f}, {{"diabetes", "BoostAODE"}, 0.83984f}, // Ecoli {{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857}, {{"ecoli", "AODELd"}, 0.875f}, {{"ecoli", "KDBLd"}, 0.880952358f}, {{"ecoli", "SPODELd"}, 0.839285731f}, {{"ecoli", "TANLd"}, 0.848214269f}, {{"ecoli", "BoostAODE"}, 0.89583f}, // Glass {{"glass", "AODE"}, 0.79439}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103}, {{"glass", "AODELd"}, 0.799065411f}, {{"glass", "KDBLd"}, 0.82710278f}, {{"glass", "SPODELd"}, 0.780373812f}, {{"glass", "TANLd"}, 0.869158864f}, {{"glass", "BoostAODE"}, 0.84579f}, // Iris {{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333}, {{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f} }; std::map models{ {"AODE", new bayesnet::AODE()}, {"AODELd", new bayesnet::AODELd()}, {"BoostAODE", new bayesnet::BoostAODE()}, {"KDB", new bayesnet::KDB(2)}, {"KDBLd", new bayesnet::KDBLd(2)}, {"SPODE", new bayesnet::SPODE(1)}, {"SPODELd", new bayesnet::SPODELd(1)}, {"TAN", new bayesnet::TAN()}, {"TANLd", new bayesnet::TANLd()} }; std::string name = GENERATE("AODE", "AODELd", "KDB", "KDBLd", "SPODE", "SPODELd", "TAN", "TANLd"); auto clf = models[name]; SECTION("Test " + name + " classifier") { for (const std::string& file_name : { "glass", "iris", "ecoli", "diabetes" }) { auto clf = models[name]; auto discretize = name.substr(name.length() - 2) != "Ld"; auto raw = RawDatasets(file_name, discretize); clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing); auto score = clf->score(raw.Xt, raw.yt); INFO("Classifier: " << name << " File: " << file_name); REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon)); REQUIRE(clf->getStatus() == bayesnet::NORMAL); } } SECTION("Library check version") { INFO("Checking version of " << name << " classifier"); REQUIRE(clf->getVersion() == ACTUAL_VERSION); } delete clf; } TEST_CASE("Models features & Graph", "[Models]") { auto graph = std::vector({ "digraph BayesNet {\nlabel=\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n", "\"class\" [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n", "\"class\" -> \"sepallength\"", "\"class\" -> \"sepalwidth\"", "\"class\" -> \"petallength\"", "\"class\" -> \"petalwidth\"", "\"petallength\" [shape=circle] \n", "\"petallength\" -> \"sepallength\"", "\"petalwidth\" [shape=circle] \n", "\"sepallength\" [shape=circle] \n", "\"sepallength\" -> \"sepalwidth\"", "\"sepalwidth\" [shape=circle] \n", "\"sepalwidth\" -> \"petalwidth\"", "}\n" } ); SECTION("Test TAN") { auto raw = RawDatasets("iris", true); auto clf = bayesnet::TAN(); clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing); REQUIRE(clf.getNumberOfNodes() == 5); REQUIRE(clf.getNumberOfEdges() == 7); REQUIRE(clf.getNumberOfStates() == 19); REQUIRE(clf.getClassNumStates() == 3); REQUIRE(clf.show() == std::vector{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "}); REQUIRE(clf.graph("Test") == graph); } SECTION("Test TANLd") { auto clf = bayesnet::TANLd(); auto raw = RawDatasets("iris", false); clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing); REQUIRE(clf.getNumberOfNodes() == 5); REQUIRE(clf.getNumberOfEdges() == 7); REQUIRE(clf.getNumberOfStates() == 27); REQUIRE(clf.getClassNumStates() == 3); REQUIRE(clf.show() == std::vector{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "}); REQUIRE(clf.graph("Test") == graph); } } TEST_CASE("Get num features & num edges", "[Models]") { auto raw = RawDatasets("iris", true); auto clf = bayesnet::KDB(2); clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing); REQUIRE(clf.getNumberOfNodes() == 5); REQUIRE(clf.getNumberOfEdges() == 8); } TEST_CASE("Model predict_proba", "[Models]") { std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting"); auto res_prob_tan = std::vector>({ { 0.00375671, 0.994457, 0.00178621 }, { 0.00137462, 0.992734, 0.00589123 }, { 0.00137462, 0.992734, 0.00589123 }, { 0.00137462, 0.992734, 0.00589123 }, { 0.00218225, 0.992877, 0.00494094 }, { 0.00494209, 0.0978534, 0.897205 }, { 0.0054192, 0.974275, 0.0203054 }, { 0.00433012, 0.985054, 0.0106159 }, { 0.000860806, 0.996922, 0.00221698 } }); auto res_prob_spode = std::vector>({ {0.00419032, 0.994247, 0.00156265}, {0.00172808, 0.993433, 0.00483862}, {0.00172808, 0.993433, 0.00483862}, {0.00172808, 0.993433, 0.00483862}, {0.00279211, 0.993737, 0.00347077}, {0.0120674, 0.357909, 0.630024}, {0.00386239, 0.913919, 0.0822185}, {0.0244389, 0.966447, 0.00911374}, {0.003135, 0.991799, 0.0050661} }); auto res_prob_baode = std::vector>({ {0.0112349, 0.962274, 0.0264907}, {0.00371025, 0.950592, 0.0456973}, {0.00371025, 0.950592, 0.0456973}, {0.00371025, 0.950592, 0.0456973}, {0.00369275, 0.84967, 0.146637}, {0.0252205, 0.113564, 0.861215}, {0.0284828, 0.770524, 0.200993}, {0.0213182, 0.857189, 0.121493}, {0.00868436, 0.949494, 0.0418215} }); auto res_prob_voting = std::vector>({ {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0} }); std::map>> res_prob{ {"TAN", res_prob_tan}, {"SPODE", res_prob_spode} , {"BoostAODEproba", res_prob_baode }, {"BoostAODEvoting", res_prob_voting } }; std::map models{ {"TAN", new bayesnet::TAN()}, {"SPODE", new bayesnet::SPODE(0)}, {"BoostAODEproba", new bayesnet::BoostAODE(false)}, {"BoostAODEvoting", new bayesnet::BoostAODE(true)} }; int init_index = 78; auto raw = RawDatasets("iris", true); SECTION("Test " + model + " predict_proba") { auto clf = models[model]; clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing); auto y_pred_proba = clf->predict_proba(raw.Xv); auto yt_pred_proba = clf->predict_proba(raw.Xt); auto y_pred = clf->predict(raw.Xv); auto yt_pred = clf->predict(raw.Xt); REQUIRE(y_pred.size() == yt_pred.size(0)); REQUIRE(y_pred.size() == y_pred_proba.size()); REQUIRE(y_pred.size() == yt_pred_proba.size(0)); REQUIRE(y_pred.size() == raw.yv.size()); REQUIRE(y_pred_proba[0].size() == 3); REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size()); for (int i = 0; i < 9; ++i) { auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end()); int predictedClass = distance(y_pred_proba[i].begin(), maxElem); REQUIRE(predictedClass == y_pred[i]); // Check predict is coherent with predict_proba REQUIRE(yt_pred_proba[i].argmax().item() == y_pred[i]); for (int j = 0; j < yt_pred_proba.size(1); j++) { REQUIRE(yt_pred_proba[i][j].item() == Catch::Approx(y_pred_proba[i][j]).epsilon(raw.epsilon)); } } // Check predict_proba values for vectors and tensors for (int i = 0; i < 9; i++) { REQUIRE(y_pred[i] == yt_pred[i].item()); for (int j = 0; j < 3; j++) { REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon)); REQUIRE(res_prob[model][i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item()).epsilon(raw.epsilon)); } } delete clf; } } TEST_CASE("AODE voting-proba", "[Models]") { auto raw = RawDatasets("glass", true); auto clf = bayesnet::AODE(false); clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing); auto score_proba = clf.score(raw.Xv, raw.yv); auto pred_proba = clf.predict_proba(raw.Xv); clf.setHyperparameters({ {"predict_voting",true}, }); auto score_voting = clf.score(raw.Xv, raw.yv); auto pred_voting = clf.predict_proba(raw.Xv); REQUIRE(score_proba == Catch::Approx(0.79439f).epsilon(raw.epsilon)); REQUIRE(score_voting == Catch::Approx(0.78972f).epsilon(raw.epsilon)); REQUIRE(pred_voting[67][0] == Catch::Approx(0.888889).epsilon(raw.epsilon)); REQUIRE(pred_proba[67][0] == Catch::Approx(0.702184).epsilon(raw.epsilon)); REQUIRE(clf.topological_order() == std::vector()); } TEST_CASE("SPODELd dataset", "[Models]") { auto raw = RawDatasets("iris", false); auto clf = bayesnet::SPODELd(0); // raw.dataset.to(torch::kFloat32); clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing); auto score = clf.score(raw.Xt, raw.yt); clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing); auto scoret = clf.score(raw.Xt, raw.yt); REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon)); REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon)); } TEST_CASE("KDB with hyperparameters", "[Models]") { auto raw = RawDatasets("glass", true); auto clf = bayesnet::KDB(2); clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing); auto score = clf.score(raw.Xv, raw.yv); clf.setHyperparameters({ {"k", 3}, {"theta", 0.7}, }); clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing); auto scoret = clf.score(raw.Xv, raw.yv); REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon)); REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon)); } TEST_CASE("Incorrect type of data for SPODELd", "[Models]") { auto raw = RawDatasets("iris", true); auto clf = bayesnet::SPODELd(0); REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error); } TEST_CASE("Predict, predict_proba & score without fitting", "[Models]") { auto clf = bayesnet::AODE(); auto raw = RawDatasets("iris", true); std::string message = "Ensemble has not been fitted"; REQUIRE_THROWS_AS(clf.predict(raw.Xv), std::logic_error); REQUIRE_THROWS_AS(clf.predict_proba(raw.Xv), std::logic_error); REQUIRE_THROWS_AS(clf.predict(raw.Xt), std::logic_error); REQUIRE_THROWS_AS(clf.predict_proba(raw.Xt), std::logic_error); REQUIRE_THROWS_AS(clf.score(raw.Xv, raw.yv), std::logic_error); REQUIRE_THROWS_AS(clf.score(raw.Xt, raw.yt), std::logic_error); REQUIRE_THROWS_WITH(clf.predict(raw.Xv), message); REQUIRE_THROWS_WITH(clf.predict_proba(raw.Xv), message); REQUIRE_THROWS_WITH(clf.predict(raw.Xt), message); REQUIRE_THROWS_WITH(clf.predict_proba(raw.Xt), message); REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message); REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message); }