// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include #include #include #include "TestUtils.h" #include "bayesnet/classifiers/TAN.h" #include "bayesnet/classifiers/KDB.h" #include "bayesnet/classifiers/KDBLd.h" TEST_CASE("Test Cannot build dataset with wrong data vector", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); raw.yv.pop_back(); REQUIRE_THROWS_AS(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error); REQUIRE_THROWS_WITH(model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]"); } TEST_CASE("Test Cannot build dataset with wrong data tensor", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); auto yshort = torch::zeros({ 149 }, torch::kInt32); REQUIRE_THROWS_AS(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error); REQUIRE_THROWS_WITH(model.fit(raw.Xt, yshort, raw.features, raw.className, raw.states, raw.smoothing), "* Error in X and y dimensions *\nX dimensions: [4, 150]\ny dimensions: [149]"); } TEST_CASE("Invalid data type", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", false); REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument); REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), "dataset (X, y) must be of type Integer"); } TEST_CASE("Invalid number of features", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); auto Xt = torch::cat({ raw.Xt, torch::zeros({ 1, 150 }, torch::kInt32) }, 0); REQUIRE_THROWS_AS(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument); REQUIRE_THROWS_WITH(model.fit(Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing), "Classifier: X 5 and features 4 must have the same number of features"); } TEST_CASE("Invalid class name", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states, raw.smoothing), std::invalid_argument); REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, "duck", raw.states, raw.smoothing), "class name not found in states"); } TEST_CASE("Invalid feature name", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); auto statest = raw.states; statest.erase("petallength"); REQUIRE_THROWS_AS(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest, raw.smoothing), std::invalid_argument); REQUIRE_THROWS_WITH(model.fit(raw.Xt, raw.yt, raw.features, raw.className, statest, raw.smoothing), "feature [petallength] not found in states"); } TEST_CASE("Invalid hyperparameter", "[Classifier]") { auto model = bayesnet::KDB(2); auto raw = RawDatasets("iris", true); REQUIRE_THROWS_AS(model.setHyperparameters({ { "alpha", "0.0" } }), std::invalid_argument); REQUIRE_THROWS_WITH(model.setHyperparameters({ { "alpha", "0.0" } }), "Invalid hyperparameters{\"alpha\":\"0.0\"}"); } TEST_CASE("Topological order", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing); auto order = model.topological_order(); REQUIRE(order.size() == 4); REQUIRE(order[0] == "petallength"); REQUIRE(order[1] == "sepallength"); REQUIRE(order[2] == "sepalwidth"); REQUIRE(order[3] == "petalwidth"); } TEST_CASE("Dump_cpt", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing); auto cpt = model.dump_cpt(); REQUIRE(cpt.size() == 1718); } TEST_CASE("Not fitted model", "[Classifier]") { auto model = bayesnet::TAN(); auto raw = RawDatasets("iris", true); auto message = "Classifier has not been fitted"; // tensors REQUIRE_THROWS_AS(model.predict(raw.Xt), std::logic_error); REQUIRE_THROWS_WITH(model.predict(raw.Xt), message); REQUIRE_THROWS_AS(model.predict_proba(raw.Xt), std::logic_error); REQUIRE_THROWS_WITH(model.predict_proba(raw.Xt), message); REQUIRE_THROWS_AS(model.score(raw.Xt, raw.yt), std::logic_error); REQUIRE_THROWS_WITH(model.score(raw.Xt, raw.yt), message); // vectors REQUIRE_THROWS_AS(model.predict(raw.Xv), std::logic_error); REQUIRE_THROWS_WITH(model.predict(raw.Xv), message); REQUIRE_THROWS_AS(model.predict_proba(raw.Xv), std::logic_error); REQUIRE_THROWS_WITH(model.predict_proba(raw.Xv), message); REQUIRE_THROWS_AS(model.score(raw.Xv, raw.yv), std::logic_error); REQUIRE_THROWS_WITH(model.score(raw.Xv, raw.yv), message); } TEST_CASE("KDB Graph", "[Classifier]") { auto model = bayesnet::KDB(2); auto raw = RawDatasets("iris", true); model.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing); auto graph = model.graph(); REQUIRE(graph.size() == 15); } TEST_CASE("KDBLd Graph", "[Classifier]") { auto model = bayesnet::KDBLd(2); auto raw = RawDatasets("iris", false); model.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing); auto graph = model.graph(); REQUIRE(graph.size() == 15); }