// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include "SPODELd.h" namespace bayesnet { SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {} SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector& features_, const std::string& className_, map>& states_, const Smoothing_t smoothing) { checkInput(X_, y_); Xf = X_; y = y_; return commonFit(features_, className_, states_, smoothing); } SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector& features_, const std::string& className_, map>& states_, const Smoothing_t smoothing) { if (!torch::is_floating_point(dataset)) { throw std::runtime_error("Dataset must be a floating point tensor"); } Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone(); y = dataset.index({ -1, "..." }).clone().to(torch::kInt32); return commonFit(features_, className_, states_, smoothing); } SPODELd& SPODELd::commonFit(const std::vector& features_, const std::string& className_, map>& states_, const Smoothing_t smoothing) { features = features_; className = className_; // Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y states = fit_local_discretization(y); // We have discretized the input data // 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network SPODE::fit(dataset, features, className, states, smoothing); states = localDiscretizationProposal(states, model); return *this; } torch::Tensor SPODELd::predict(torch::Tensor& X) { auto Xt = prepareX(X); return SPODE::predict(Xt); } std::vector SPODELd::graph(const std::string& name) const { return SPODE::graph(name); } }