// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include #include "bayesnet/feature_selection/CFS.h" #include "bayesnet/feature_selection/FCBF.h" #include "bayesnet/feature_selection/IWSS.h" #include "Boost.h" namespace bayesnet { Boost::Boost(bool predict_voting) : Ensemble(predict_voting) { validHyperparameters = { "alpha_block", "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance", "predict_voting", "select_features", "block_update" }; } void Boost::setHyperparameters(const nlohmann::json& hyperparameters_) { auto hyperparameters = hyperparameters_; if (hyperparameters.contains("order")) { std::vector algos = { Orders.ASC, Orders.DESC, Orders.RAND }; order_algorithm = hyperparameters["order"]; if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) { throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]"); } hyperparameters.erase("order"); } if (hyperparameters.contains("alpha_block")) { alpha_block = hyperparameters["alpha_block"]; hyperparameters.erase("alpha_block"); } if (hyperparameters.contains("convergence")) { convergence = hyperparameters["convergence"]; hyperparameters.erase("convergence"); } if (hyperparameters.contains("convergence_best")) { convergence_best = hyperparameters["convergence_best"]; hyperparameters.erase("convergence_best"); } if (hyperparameters.contains("bisection")) { bisection = hyperparameters["bisection"]; hyperparameters.erase("bisection"); } if (hyperparameters.contains("threshold")) { threshold = hyperparameters["threshold"]; hyperparameters.erase("threshold"); } if (hyperparameters.contains("maxTolerance")) { maxTolerance = hyperparameters["maxTolerance"]; if (maxTolerance < 1 || maxTolerance > 4) throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]"); hyperparameters.erase("maxTolerance"); } if (hyperparameters.contains("predict_voting")) { predict_voting = hyperparameters["predict_voting"]; hyperparameters.erase("predict_voting"); } if (hyperparameters.contains("select_features")) { auto selectedAlgorithm = hyperparameters["select_features"]; std::vector algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF }; selectFeatures = true; select_features_algorithm = selectedAlgorithm; if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) { throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]"); } hyperparameters.erase("select_features"); } if (hyperparameters.contains("block_update")) { block_update = hyperparameters["block_update"]; hyperparameters.erase("block_update"); } if (block_update && alpha_block) { throw std::invalid_argument("alpha_block and block_update cannot be true at the same time"); } if (block_update && !bisection) { throw std::invalid_argument("block_update needs bisection to be true"); } Classifier::setHyperparameters(hyperparameters); } void Boost::buildModel(const torch::Tensor& weights) { // Models shall be built in trainModel models.clear(); significanceModels.clear(); n_models = 0; // Prepare the validation dataset auto y_ = dataset.index({ -1, "..." }); if (convergence) { // Prepare train & validation sets from train data auto fold = folding::StratifiedKFold(5, y_, 271); auto [train, test] = fold.getFold(0); auto train_t = torch::tensor(train); auto test_t = torch::tensor(test); // Get train and validation sets X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t }); y_train = dataset.index({ -1, train_t }); X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t }); y_test = dataset.index({ -1, test_t }); dataset = X_train; m = X_train.size(1); auto n_classes = states.at(className).size(); // Build dataset with train data buildDataset(y_train); metrics = Metrics(dataset, features, className, n_classes); } else { // Use all data to train X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }); y_train = y_; } } std::vector Boost::featureSelection(torch::Tensor& weights_) { int maxFeatures = 0; if (select_features_algorithm == SelectFeatures.CFS) { featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_); } else if (select_features_algorithm == SelectFeatures.IWSS) { if (threshold < 0 || threshold >0.5) { throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]"); } featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold); } else if (select_features_algorithm == SelectFeatures.FCBF) { if (threshold < 1e-7 || threshold > 1) { throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]"); } featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold); } featureSelector->fit(); auto featuresUsed = featureSelector->getFeatures(); delete featureSelector; return featuresUsed; } std::tuple Boost::update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights) { bool terminate = false; double alpha_t = 0; auto mask_wrong = ypred != ytrain; auto mask_right = ypred == ytrain; auto masked_weights = weights * mask_wrong.to(weights.dtype()); double epsilon_t = masked_weights.sum().item(); if (epsilon_t > 0.5) { // Inverse the weights policy (plot ln(wt)) // "In each round of AdaBoost, there is a sanity check to ensure that the current base // learner is better than random guess" (Zhi-Hua Zhou, 2012) terminate = true; } else { double wt = (1 - epsilon_t) / epsilon_t; alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt); // Step 3.2: Update weights for next classifier // Step 3.2.1: Update weights of wrong samples weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights; // Step 3.2.2: Update weights of right samples weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights; // Step 3.3: Normalise the weights double totalWeights = torch::sum(weights).item(); weights = weights / totalWeights; } return { weights, alpha_t, terminate }; } std::tuple Boost::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights) { /* Update Block algorithm k = # of models in block n_models = # of models in ensemble to make predictions n_models_bak = # models saved models = vector of models to make predictions models_bak = models not used to make predictions significances_bak = backup of significances vector Case list A) k = 1, n_models = 1 => n = 0 , n_models = n + k B) k = 1, n_models = n + 1 => n_models = n + k C) k > 1, n_models = k + 1 => n= 1, n_models = n + k D) k > 1, n_models = k => n = 0, n_models = n + k E) k > 1, n_models = k + n => n_models = n + k A, D) n=0, k > 0, n_models == k 1. n_models_bak <- n_models 2. significances_bak <- significances 3. significances = vector(k, 1) 4. Don’t move any classifiers out of models 5. n_models <- k 6. Make prediction, compute alpha, update weights 7. Don’t restore any classifiers to models 8. significances <- significances_bak 9. Update last k significances 10. n_models <- n_models_bak B, C, E) n > 0, k > 0, n_models == n + k 1. n_models_bak <- n_models 2. significances_bak <- significances 3. significances = vector(k, 1) 4. Move first n classifiers to models_bak 5. n_models <- k 6. Make prediction, compute alpha, update weights 7. Insert classifiers in models_bak to be the first n models 8. significances <- significances_bak 9. Update last k significances 10. n_models <- n_models_bak */ // // Make predict with only the last k models // std::unique_ptr model; std::vector> models_bak; // 1. n_models_bak <- n_models 2. significances_bak <- significances auto significance_bak = significanceModels; auto n_models_bak = n_models; // 3. significances = vector(k, 1) significanceModels = std::vector(k, 1.0); // 4. Move first n classifiers to models_bak // backup the first n_models - k models (if n_models == k, don't backup any) for (int i = 0; i < n_models - k; ++i) { model = std::move(models[0]); models.erase(models.begin()); models_bak.push_back(std::move(model)); } assert(models.size() == k); // 5. n_models <- k n_models = k; // 6. Make prediction, compute alpha, update weights auto ypred = predict(X_train); // // Update weights // double alpha_t; bool terminate; std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights); // // Restore the models if needed // // 7. Insert classifiers in models_bak to be the first n models // if n_models_bak == k, don't restore any, because none of them were moved if (k != n_models_bak) { // Insert in the same order as they were extracted int bak_size = models_bak.size(); for (int i = 0; i < bak_size; ++i) { model = std::move(models_bak[bak_size - 1 - i]); models_bak.erase(models_bak.end() - 1); models.insert(models.begin(), std::move(model)); } } // 8. significances <- significances_bak significanceModels = significance_bak; // // Update the significance of the last k models // // 9. Update last k significances for (int i = 0; i < k; ++i) { significanceModels[n_models_bak - k + i] = alpha_t; } // 10. n_models <- n_models_bak n_models = n_models_bak; return { weights, alpha_t, terminate }; } }