#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do #include #include #include #include #include #include #include "KDB.h" #include "TAN.h" #include "SPODE.h" #include "AODE.h" #include "platformUtils.h" TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]") { map , float> scores = { {{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615}, {{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857}, {{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103}, {{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333} }; string file_name = GENERATE("glass", "iris", "ecoli", "diabetes"); auto [Xd, y, features, className, states] = loadFile(file_name); SECTION("Test TAN classifier (" + file_name + ")") { auto clf = bayesnet::TAN(); clf.fit(Xd, y, features, className, states); auto score = clf.score(Xd, y); //scores[{file_name, "TAN"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(1e-6)); } SECTION("Test KDB classifier (" + file_name + ")") { auto clf = bayesnet::KDB(2); clf.fit(Xd, y, features, className, states); auto score = clf.score(Xd, y); //scores[{file_name, "KDB"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "KDB" }]).epsilon(1e-6)); } SECTION("Test SPODE classifier (" + file_name + ")") { auto clf = bayesnet::SPODE(1); clf.fit(Xd, y, features, className, states); auto score = clf.score(Xd, y); // scores[{file_name, "SPODE"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(1e-6)); } SECTION("Test AODE classifier (" + file_name + ")") { auto clf = bayesnet::AODE(); clf.fit(Xd, y, features, className, states); auto score = clf.score(Xd, y); // scores[{file_name, "AODE"}] = score; REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(1e-6)); } // for (auto scores : scores) { // cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, "; // } } TEST_CASE("Models features") { auto graph = vector({ "digraph BayesNet {\nlabel=\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n", "class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n", "class -> sepallength", "class -> sepalwidth", "class -> petallength", "class -> petalwidth", "petallength [shape=circle] \n", "petallength -> sepallength", "petalwidth [shape=circle] \n", "sepallength [shape=circle] \n", "sepallength -> sepalwidth", "sepalwidth [shape=circle] \n", "sepalwidth -> petalwidth", "}\n" } ); auto clf = bayesnet::TAN(); auto [Xd, y, features, className, states] = loadFile("iris"); clf.fit(Xd, y, features, className, states); REQUIRE(clf.getNumberOfNodes() == 5); REQUIRE(clf.getNumberOfEdges() == 7); REQUIRE(clf.show() == vector{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "}); REQUIRE(clf.graph("Test") == graph); } TEST_CASE("Get num features & num edges") { auto [Xd, y, features, className, states] = loadFile("iris"); auto clf = bayesnet::KDB(2); clf.fit(Xd, y, features, className, states); REQUIRE(clf.getNumberOfNodes() == 5); REQUIRE(clf.getNumberOfEdges() == 8); }