Solve Ensemble models exceptions on certain datasets #7
9
.vscode/launch.json
vendored
9
.vscode/launch.json
vendored
@ -25,16 +25,17 @@
|
|||||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||||
"args": [
|
"args": [
|
||||||
"-m",
|
"-m",
|
||||||
"AODELd",
|
"AODE",
|
||||||
"-p",
|
"-p",
|
||||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
"/home/rmontanana/Code/discretizbench/datasets",
|
||||||
"--stratified",
|
"--stratified",
|
||||||
"-d",
|
"-d",
|
||||||
"wine"
|
"mfeat-morphological",
|
||||||
|
"--discretize"
|
||||||
// "--hyperparameters",
|
// "--hyperparameters",
|
||||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||||
],
|
],
|
||||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
cmake_minimum_required(VERSION 3.20)
|
cmake_minimum_required(VERSION 3.20)
|
||||||
|
|
||||||
project(BayesNet
|
project(BayesNet
|
||||||
VERSION 0.1.0
|
VERSION 0.2.0
|
||||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||||
LANGUAGES CXX
|
LANGUAGES CXX
|
||||||
@ -40,8 +40,7 @@ if (CODE_COVERAGE)
|
|||||||
enable_testing()
|
enable_testing()
|
||||||
include(CodeCoverage)
|
include(CodeCoverage)
|
||||||
MESSAGE("Code coverage enabled")
|
MESSAGE("Code coverage enabled")
|
||||||
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
|
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0")
|
||||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
|
|
||||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||||
endif (CODE_COVERAGE)
|
endif (CODE_COVERAGE)
|
||||||
|
|
||||||
|
@ -1 +0,0 @@
|
|||||||
null
|
|
BIN
diagrams/BayesNet.pdf
Executable file
BIN
diagrams/BayesNet.pdf
Executable file
Binary file not shown.
@ -25,7 +25,7 @@ namespace bayesnet {
|
|||||||
int virtual getNumberOfStates() const = 0;
|
int virtual getNumberOfStates() const = 0;
|
||||||
vector<string> virtual show() const = 0;
|
vector<string> virtual show() const = 0;
|
||||||
vector<string> virtual graph(const string& title = "") const = 0;
|
vector<string> virtual graph(const string& title = "") const = 0;
|
||||||
const string inline getVersion() const { return "0.1.0"; };
|
const string inline getVersion() const { return "0.2.0"; };
|
||||||
vector<string> virtual topological_order() = 0;
|
vector<string> virtual topological_order() = 0;
|
||||||
void virtual dump_cpt()const = 0;
|
void virtual dump_cpt()const = 0;
|
||||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
||||||
|
@ -13,7 +13,7 @@ namespace bayesnet {
|
|||||||
m = dataset.size(1);
|
m = dataset.size(1);
|
||||||
n = dataset.size(0) - 1;
|
n = dataset.size(0) - 1;
|
||||||
checkFitParameters();
|
checkFitParameters();
|
||||||
auto n_classes = states[className].size();
|
auto n_classes = states.at(className).size();
|
||||||
metrics = Metrics(dataset, features, className, n_classes);
|
metrics = Metrics(dataset, features, className, n_classes);
|
||||||
model.initialize();
|
model.initialize();
|
||||||
buildModel(weights);
|
buildModel(weights);
|
||||||
|
@ -17,9 +17,13 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||||
vector<int> y_pred_final;
|
vector<int> y_pred_final;
|
||||||
|
int numClasses = states.at(className).size();
|
||||||
|
// y_pred is m x n_models with the prediction of every model for each sample
|
||||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||||
vector<double> votes(y_pred.size(1), 0);
|
// votes store in each index (value of class) the significance added by each model
|
||||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||||
|
vector<double> votes(numClasses, 0.0);
|
||||||
|
for (int j = 0; j < n_models; ++j) {
|
||||||
votes[y_pred_[i][j]] += significanceModels[j];
|
votes[y_pred_[i][j]] += significanceModels[j];
|
||||||
}
|
}
|
||||||
// argsort in descending order
|
// argsort in descending order
|
||||||
@ -34,7 +38,6 @@ namespace bayesnet {
|
|||||||
throw logic_error("Ensemble has not been fitted");
|
throw logic_error("Ensemble has not been fitted");
|
||||||
}
|
}
|
||||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||||
//Create a threadpool
|
|
||||||
auto threads{ vector<thread>() };
|
auto threads{ vector<thread>() };
|
||||||
mutex mtx;
|
mutex mtx;
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
@ -174,42 +174,10 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
setStates(states);
|
setStates(states);
|
||||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
for (auto& node : nodes) {
|
||||||
if (maxThreadsRunning < 1) {
|
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||||
maxThreadsRunning = 1;
|
fitted = true;
|
||||||
}
|
}
|
||||||
vector<thread> threads;
|
|
||||||
mutex mtx;
|
|
||||||
condition_variable cv;
|
|
||||||
int activeThreads = 0;
|
|
||||||
int nextNodeIndex = 0;
|
|
||||||
while (nextNodeIndex < nodes.size()) {
|
|
||||||
unique_lock<mutex> lock(mtx);
|
|
||||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
|
||||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
|
||||||
while (true) {
|
|
||||||
unique_lock<mutex> lock(mtx);
|
|
||||||
if (nextNodeIndex >= nodes.size()) {
|
|
||||||
break; // No more work remaining
|
|
||||||
}
|
|
||||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
|
||||||
++nextNodeIndex;
|
|
||||||
lock.unlock();
|
|
||||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
|
||||||
lock.lock();
|
|
||||||
nodes[pair.first] = std::move(pair.second);
|
|
||||||
lock.unlock();
|
|
||||||
}
|
|
||||||
lock_guard<mutex> lock(mtx);
|
|
||||||
--activeThreads;
|
|
||||||
cv.notify_one();
|
|
||||||
});
|
|
||||||
++activeThreads;
|
|
||||||
}
|
|
||||||
for (auto& thread : threads) {
|
|
||||||
thread.join();
|
|
||||||
}
|
|
||||||
fitted = true;
|
|
||||||
}
|
}
|
||||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||||
{
|
{
|
||||||
|
@ -27,6 +27,7 @@ namespace bayesnet {
|
|||||||
Network();
|
Network();
|
||||||
explicit Network(float);
|
explicit Network(float);
|
||||||
explicit Network(Network&);
|
explicit Network(Network&);
|
||||||
|
~Network() = default;
|
||||||
torch::Tensor& getSamples();
|
torch::Tensor& getSamples();
|
||||||
float getmaxThreads();
|
float getmaxThreads();
|
||||||
void addNode(const string&);
|
void addNode(const string&);
|
||||||
@ -52,7 +53,7 @@ namespace bayesnet {
|
|||||||
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
|
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
|
||||||
void initialize();
|
void initialize();
|
||||||
void dump_cpt() const;
|
void dump_cpt() const;
|
||||||
inline string version() { return "0.1.0"; }
|
inline string version() { return "0.2.0"; }
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@ -100,7 +100,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
int name_index = pos - features.begin();
|
int name_index = pos - features.begin();
|
||||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||||
for (auto parent : parents) {
|
for (auto parent : parents) {
|
||||||
pos = find(features.begin(), features.end(), parent->getName());
|
pos = find(features.begin(), features.end(), parent->getName());
|
||||||
@ -118,10 +118,10 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
float Node::getFactorValue(map<string, int>& evidence)
|
float Node::getFactorValue(map<string, int>& evidence)
|
||||||
{
|
{
|
||||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||||
// following predetermined order of indices in the cpTable (see Node.h)
|
// following predetermined order of indices in the cpTable (see Node.h)
|
||||||
coordinates.push_back(torch::tensor(evidence[name]));
|
coordinates.push_back(at::tensor(evidence[name]));
|
||||||
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
|
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||||
return cpTable.index({ coordinates }).item<float>();
|
return cpTable.index({ coordinates }).item<float>();
|
||||||
}
|
}
|
||||||
vector<string> Node::graph(const string& className)
|
vector<string> Node::graph(const string& className)
|
||||||
|
@ -53,15 +53,6 @@ namespace bayesnet {
|
|||||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||||
discretizers[feature]->fit(xvf, yxv);
|
discretizers[feature]->fit(xvf, yxv);
|
||||||
//
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// auto tmp = discretizers[feature]->transform(xvf);
|
|
||||||
// Xv[index] = tmp;
|
|
||||||
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
|
||||||
// iota(xStates.begin(), xStates.end(), 0);
|
|
||||||
// //Update new states of the feature/node
|
|
||||||
// states[feature] = xStates;
|
|
||||||
}
|
}
|
||||||
if (upgrade) {
|
if (upgrade) {
|
||||||
// Discretize again X (only the affected indices) with the new fitted discretizers
|
// Discretize again X (only the affected indices) with the new fitted discretizers
|
||||||
|
@ -213,10 +213,11 @@ namespace platform {
|
|||||||
{
|
{
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
auto item = states.at(features[i]);
|
||||||
|
iota(begin(item), end(item), 0);
|
||||||
}
|
}
|
||||||
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||||
iota(begin(states[className]), end(states[className]), 0);
|
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||||
}
|
}
|
||||||
void Dataset::load_arff()
|
void Dataset::load_arff()
|
||||||
{
|
{
|
||||||
|
@ -179,8 +179,10 @@ namespace platform {
|
|||||||
result.addTimeTrain(train_time[item].item<double>());
|
result.addTimeTrain(train_time[item].item<double>());
|
||||||
result.addTimeTest(test_time[item].item<double>());
|
result.addTimeTest(test_time[item].item<double>());
|
||||||
item++;
|
item++;
|
||||||
|
clf.reset();
|
||||||
}
|
}
|
||||||
cout << "end. " << flush;
|
cout << "end. " << flush;
|
||||||
|
delete fold;
|
||||||
}
|
}
|
||||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||||
|
@ -26,7 +26,7 @@ namespace platform {
|
|||||||
instance = it->second();
|
instance = it->second();
|
||||||
// wrap instance in a shared ptr and return
|
// wrap instance in a shared ptr and return
|
||||||
if (instance != nullptr)
|
if (instance != nullptr)
|
||||||
return shared_ptr<bayesnet::BaseClassifier>(instance);
|
return unique_ptr<bayesnet::BaseClassifier>(instance);
|
||||||
else
|
else
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
@ -69,11 +69,12 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
|
|||||||
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
|
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||||
iota(begin(states[features[i]]), end(states[features[i]]), 0);
|
auto item = states.at(features[i]);
|
||||||
|
iota(begin(item), end(item), 0);
|
||||||
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
|
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
|
||||||
}
|
}
|
||||||
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||||
iota(begin(states[className]), end(states[className]), 0);
|
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||||
} else {
|
} else {
|
||||||
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
|
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
|
Loading…
Reference in New Issue
Block a user