BoostA2DE #29

Merged
rmontanana merged 21 commits from BoostA2DE into main 2024-06-09 10:02:48 +00:00
7 changed files with 356 additions and 12 deletions
Showing only changes of commit 1f236a70db - Show all commits

View File

@ -0,0 +1,89 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <set>
#include <functional>
#include <limits.h>
#include <tuple>
#include <folding.hpp>
#include "bayesnet/feature_selection/CFS.h"
#include "bayesnet/feature_selection/FCBF.h"
#include "bayesnet/feature_selection/IWSS.h"
#include "BoostA2DE.h"
namespace bayesnet {
BoostA2DE::BoostA2DE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = {
"maxModels", "bisection", "order", "convergence", "convergence_best", "threshold",
"select_features", "maxTolerance", "predict_voting", "block_update"
};
}
void BoostA2DE::buildModel(const torch::Tensor& weights)
{
models.clear();
}
void BoostA2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("order")) {
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
order_algorithm = hyperparameters["order"];
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
}
hyperparameters.erase("order");
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("convergence_best")) {
convergence_best = hyperparameters["convergence_best"];
hyperparameters.erase("convergence_best");
}
if (hyperparameters.contains("bisection")) {
bisection = hyperparameters["bisection"];
hyperparameters.erase("bisection");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("maxTolerance")) {
maxTolerance = hyperparameters["maxTolerance"];
if (maxTolerance < 1 || maxTolerance > 4)
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
hyperparameters.erase("maxTolerance");
}
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
selectFeatures = true;
select_features_algorithm = selectedAlgorithm;
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
}
hyperparameters.erase("select_features");
}
if (hyperparameters.contains("block_update")) {
block_update = hyperparameters["block_update"];
hyperparameters.erase("block_update");
}
Classifier::setHyperparameters(hyperparameters);
}
std::vector<std::string> BoostA2DE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

View File

@ -0,0 +1,38 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BOOSTA2DE_H
#define BOOSTA2DE_H
#include <map>
#include "boost.h"
#include "bayesnet/classifiers/SPnDE.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
#include "Ensemble.h"
namespace bayesnet {
class BoostA2DE : public Ensemble {
public:
explicit BoostA2DE(bool predict_voting = false);
virtual ~BoostA2DE() = default;
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
protected:
void buildModel(const torch::Tensor& weights) override;
private:
torch::Tensor X_train, y_train, X_test, y_test;
// Hyperparameters
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
int maxTolerance = 3;
std::string order_algorithm; // order to process the KBest features asc, desc, rand
bool convergence = true; //if true, stop when the model does not improve
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
bool selectFeatures = false; // if true, use feature selection
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
bool block_update = false;
};
}
#endif

View File

@ -9,18 +9,9 @@
#include <map>
#include "bayesnet/classifiers/SPODE.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
#include "boost.h"
#include "Ensemble.h"
namespace bayesnet {
const struct {
std::string CFS = "CFS";
std::string FCBF = "FCBF";
std::string IWSS = "IWSS";
}SelectFeatures;
const struct {
std::string ASC = "asc";
std::string DESC = "desc";
std::string RAND = "rand";
}Orders;
class BoostAODE : public Ensemble {
public:
explicit BoostAODE(bool predict_voting = false);

View File

@ -0,0 +1,13 @@
#ifndef BOOST_H
#define BOOST_H
const struct {
std::string CFS = "CFS";
std::string FCBF = "FCBF";
std::string IWSS = "IWSS";
}SelectFeatures;
const struct {
std::string ASC = "asc";
std::string DESC = "desc";
std::string RAND = "rand";
}Orders;
#endif

View File

@ -27,4 +27,4 @@ The hyperparameters defined in the algorithm are:
## Operation
### [Algorithm](./algorithm.md)
### [Base Algorithm](./algorithm.md)

View File

@ -10,7 +10,7 @@ if(ENABLE_TESTING)
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc ${BayesNet_SOURCES})
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc ${BayesNet_SOURCES})
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp PRIVATE Catch2::Catch2WithMain)
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
add_test(NAME Network COMMAND TestBayesNet "[Network]")
@ -22,5 +22,6 @@ if(ENABLE_TESTING)
add_test(NAME Models COMMAND TestBayesNet "[Models]")
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
add_test(NAME BoostA2DE COMMAND TestBayesNet "[BoostA2DE]")
add_test(NAME Modules COMMAND TestBayesNet "[Modules]")
endif(ENABLE_TESTING)

212
tests/TestBoostA2DE.cc Normal file
View File

@ -0,0 +1,212 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <type_traits>
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include "bayesnet/ensembles/BoostA2DE.h"
#include "TestUtils.h"
TEST_CASE("Feature_select CFS", "[BoostA2DE]")
{
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::BoostA2DE();
clf.setHyperparameters({ {"select_features", "CFS"} });
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
REQUIRE(clf.getNumberOfNodes() == 0);
REQUIRE(clf.getNumberOfEdges() == 0);
// REQUIRE(clf.getNotes().size() == 2);
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
}
// TEST_CASE("Feature_select IWSS", "[BoostAODE]")
// {
// auto raw = RawDatasets("glass", true);
// auto clf = bayesnet::BoostAODE();
// clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
// REQUIRE(clf.getNumberOfNodes() == 90);
// REQUIRE(clf.getNumberOfEdges() == 153);
// REQUIRE(clf.getNotes().size() == 2);
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
// }
// TEST_CASE("Feature_select FCBF", "[BoostAODE]")
// {
// auto raw = RawDatasets("glass", true);
// auto clf = bayesnet::BoostAODE();
// clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
// REQUIRE(clf.getNumberOfNodes() == 90);
// REQUIRE(clf.getNumberOfEdges() == 153);
// REQUIRE(clf.getNotes().size() == 2);
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
// }
// TEST_CASE("Test used features in train note and score", "[BoostAODE]")
// {
// auto raw = RawDatasets("diabetes", true);
// auto clf = bayesnet::BoostAODE(true);
// clf.setHyperparameters({
// {"order", "asc"},
// {"convergence", true},
// {"select_features","CFS"},
// });
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
// REQUIRE(clf.getNumberOfNodes() == 72);
// REQUIRE(clf.getNumberOfEdges() == 120);
// REQUIRE(clf.getNotes().size() == 2);
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
// REQUIRE(clf.getNotes()[1] == "Number of models: 8");
// auto score = clf.score(raw.Xv, raw.yv);
// auto scoret = clf.score(raw.Xt, raw.yt);
// REQUIRE(score == Catch::Approx(0.809895813).epsilon(raw.epsilon));
// REQUIRE(scoret == Catch::Approx(0.809895813).epsilon(raw.epsilon));
// }
// TEST_CASE("Voting vs proba", "[BoostAODE]")
// {
// auto raw = RawDatasets("iris", true);
// auto clf = bayesnet::BoostAODE(false);
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
// auto score_proba = clf.score(raw.Xv, raw.yv);
// auto pred_proba = clf.predict_proba(raw.Xv);
// clf.setHyperparameters({
// {"predict_voting",true},
// });
// auto score_voting = clf.score(raw.Xv, raw.yv);
// auto pred_voting = clf.predict_proba(raw.Xv);
// REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
// REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
// REQUIRE(pred_voting[83][2] == Catch::Approx(1.0).epsilon(raw.epsilon));
// REQUIRE(pred_proba[83][2] == Catch::Approx(0.86121525).epsilon(raw.epsilon));
// REQUIRE(clf.dump_cpt() == "");
// REQUIRE(clf.topological_order() == std::vector<std::string>());
// }
// TEST_CASE("Order asc, desc & random", "[BoostAODE]")
// {
// auto raw = RawDatasets("glass", true);
// std::map<std::string, double> scores{
// {"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
// };
// for (const std::string& order : { "asc", "desc", "rand" }) {
// auto clf = bayesnet::BoostAODE();
// clf.setHyperparameters({
// {"order", order},
// {"bisection", false},
// {"maxTolerance", 1},
// {"convergence", false},
// });
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
// auto score = clf.score(raw.Xv, raw.yv);
// auto scoret = clf.score(raw.Xt, raw.yt);
// INFO("BoostAODE order: " + order);
// REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
// REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
// }
// }
// TEST_CASE("Oddities", "[BoostAODE]")
// {
// auto clf = bayesnet::BoostAODE();
// auto raw = RawDatasets("iris", true);
// auto bad_hyper = nlohmann::json{
// { { "order", "duck" } },
// { { "select_features", "duck" } },
// { { "maxTolerance", 0 } },
// { { "maxTolerance", 5 } },
// };
// for (const auto& hyper : bad_hyper.items()) {
// INFO("BoostAODE hyper: " + hyper.value().dump());
// REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
// }
// REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
// auto bad_hyper_fit = nlohmann::json{
// { { "select_features","IWSS" }, { "threshold", -0.01 } },
// { { "select_features","IWSS" }, { "threshold", 0.51 } },
// { { "select_features","FCBF" }, { "threshold", 1e-8 } },
// { { "select_features","FCBF" }, { "threshold", 1.01 } },
// };
// for (const auto& hyper : bad_hyper_fit.items()) {
// INFO("BoostAODE hyper: " + hyper.value().dump());
// clf.setHyperparameters(hyper.value());
// REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::invalid_argument);
// }
// }
// TEST_CASE("Bisection Best", "[BoostAODE]")
// {
// auto clf = bayesnet::BoostAODE();
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
// clf.setHyperparameters({
// {"bisection", true},
// {"maxTolerance", 3},
// {"convergence", true},
// {"block_update", false},
// {"convergence_best", false},
// });
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
// REQUIRE(clf.getNumberOfNodes() == 210);
// REQUIRE(clf.getNumberOfEdges() == 378);
// REQUIRE(clf.getNotes().size() == 1);
// REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
// auto score = clf.score(raw.X_test, raw.y_test);
// auto scoret = clf.score(raw.X_test, raw.y_test);
// REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
// REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
// }
// TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
// {
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
// auto clf = bayesnet::BoostAODE(true);
// auto hyperparameters = nlohmann::json{
// {"bisection", true},
// {"maxTolerance", 3},
// {"convergence", true},
// {"convergence_best", true},
// };
// clf.setHyperparameters(hyperparameters);
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
// auto score_best = clf.score(raw.X_test, raw.y_test);
// REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
// // Now we will set the hyperparameter to use the last accuracy
// hyperparameters["convergence_best"] = false;
// clf.setHyperparameters(hyperparameters);
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
// auto score_last = clf.score(raw.X_test, raw.y_test);
// REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
// }
// TEST_CASE("Block Update", "[BoostAODE]")
// {
// auto clf = bayesnet::BoostAODE();
// auto raw = RawDatasets("mfeat-factors", true, 500);
// clf.setHyperparameters({
// {"bisection", true},
// {"block_update", true},
// {"maxTolerance", 3},
// {"convergence", true},
// });
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
// REQUIRE(clf.getNumberOfNodes() == 868);
// REQUIRE(clf.getNumberOfEdges() == 1724);
// REQUIRE(clf.getNotes().size() == 3);
// REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
// REQUIRE(clf.getNotes()[1] == "Used features in train: 19 of 216");
// REQUIRE(clf.getNotes()[2] == "Number of models: 4");
// auto score = clf.score(raw.X_test, raw.y_test);
// auto scoret = clf.score(raw.X_test, raw.y_test);
// REQUIRE(score == Catch::Approx(0.99f).epsilon(raw.epsilon));
// REQUIRE(scoret == Catch::Approx(0.99f).epsilon(raw.epsilon));
// //
// // std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
// // std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
// // std::cout << "Notes size " << clf.getNotes().size() << std::endl;
// // for (auto note : clf.getNotes()) {
// // std::cout << note << std::endl;
// // }
// // std::cout << "Score " << score << std::endl;
// }