optimize_memory #2

Merged
rmontanana merged 6 commits from optimize_memory into main 2023-08-12 14:15:04 +00:00
34 changed files with 274 additions and 290 deletions

2
.vscode/launch.json vendored
View File

@ -25,7 +25,7 @@
"program": "${workspaceFolder}/build/src/Platform/main", "program": "${workspaceFolder}/build/src/Platform/main",
"args": [ "args": [
"-m", "-m",
"AODELd", "SPODELd",
"-p", "-p",
"/Users/rmontanana/Code/discretizbench/datasets", "/Users/rmontanana/Code/discretizbench/datasets",
"--stratified", "--stratified",

View File

@ -2,14 +2,14 @@
namespace bayesnet { namespace bayesnet {
AODE::AODE() : Ensemble() {} AODE::AODE() : Ensemble() {}
void AODE::train() void AODE::buildModel()
{ {
models.clear(); models.clear();
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i)); models.push_back(std::make_unique<SPODE>(i));
} }
} }
vector<string> AODE::graph(const string& title) vector<string> AODE::graph(const string& title) const
{ {
return Ensemble::graph(title); return Ensemble::graph(title);
} }

View File

@ -5,11 +5,11 @@
namespace bayesnet { namespace bayesnet {
class AODE : public Ensemble { class AODE : public Ensemble {
protected: protected:
void train() override; void buildModel() override;
public: public:
AODE(); AODE();
virtual ~AODE() {}; virtual ~AODE() {};
vector<string> graph(const string& title = "AODE") override; vector<string> graph(const string& title = "AODE") const override;
}; };
} }
#endif #endif

View File

@ -1,33 +1,39 @@
#include "AODELd.h" #include "AODELd.h"
#include "Models.h"
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(Ensemble::Xv, Ensemble::yv, features, className) {} AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_; features = features_;
className = className_; className = className_;
states = states_; Xf = X_;
train(); y = y_;
for (const auto& model : models) { // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
model->fit(X_, y_, features_, className_, states_); states = fit_local_discretization(y);
} // We have discretized the input data
n_models = models.size(); // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
fitted = true; Ensemble::fit(dataset, features, className, states);
return *this; return *this;
} }
void AODELd::train() void AODELd::buildModel()
{ {
models.clear(); models.clear();
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i)); models.push_back(std::make_unique<SPODELd>(i));
} }
n_models = models.size();
} }
Tensor AODELd::predict(Tensor& X) void AODELd::trainModel()
{ {
return Ensemble::predict(X); for (const auto& model : models) {
model->fit(Xf, y, features, className, states);
}
} }
vector<string> AODELd::graph(const string& name) vector<string> AODELd::graph(const string& name) const
{ {
return Ensemble::graph(name); return Ensemble::graph(name);
} }

View File

@ -7,13 +7,14 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
class AODELd : public Ensemble, public Proposal { class AODELd : public Ensemble, public Proposal {
protected:
void trainModel() override;
void buildModel() override;
public: public:
AODELd(); AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default; virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; vector<string> graph(const string& name = "AODE") const override;
vector<string> graph(const string& name = "AODE") override;
Tensor predict(Tensor& X) override;
void train() override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
}; };
} }

View File

@ -5,24 +5,27 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
class BaseClassifier { class BaseClassifier {
protected:
virtual void trainModel() = 0;
public: public:
// X is nxm vector, y is nx1 vector // X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor // X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual ~BaseClassifier() = default; virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0; torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0; vector<int> virtual predict(vector<vector<int>>& X) = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0; float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0; float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes() = 0; int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges() = 0; int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() = 0; int virtual getNumberOfStates() const = 0;
vector<string> virtual show() = 0; vector<string> virtual show() const = 0;
vector<string> virtual graph(const string& title = "") = 0; vector<string> virtual graph(const string& title = "") const = 0;
const string inline getVersion() const { return "0.1.0"; }; const string inline getVersion() const { return "0.1.0"; };
vector<string> virtual topological_order() = 0; vector<string> virtual topological_order() = 0;
void virtual dump_cpt() = 0; void virtual dump_cpt()const = 0;
}; };
} }
#endif #endif

View File

@ -2,7 +2,7 @@
#include "Mst.h" #include "Mst.h"
namespace bayesnet { namespace bayesnet {
//samples is nxm tensor used to fit the model //samples is nxm tensor used to fit the model
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates) Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples) : samples(samples)
, features(features) , features(features)
, className(className) , className(className)
@ -76,7 +76,7 @@ namespace bayesnet {
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel()); std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v; return v;
} }
double Metrics::entropy(torch::Tensor& feature) double Metrics::entropy(const torch::Tensor& feature)
{ {
torch::Tensor counts = feature.bincount(); torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>(); int totalWeight = counts.sum().item<int>();
@ -86,7 +86,7 @@ namespace bayesnet {
return entropy.nansum().item<double>(); return entropy.nansum().item<double>();
} }
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x) // H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature) double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{ {
int numSamples = firstFeature.sizes()[0]; int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(); torch::Tensor featureCounts = secondFeature.bincount();
@ -115,7 +115,7 @@ namespace bayesnet {
return entropyValue; return entropyValue;
} }
// I(X;Y) = H(Y) - H(Y|X) // I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature) double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{ {
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature); return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
} }
@ -124,7 +124,7 @@ namespace bayesnet {
and the indices of the weights as nodes of this square matrix using and the indices of the weights as nodes of this square matrix using
Kruskal algorithm Kruskal algorithm
*/ */
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root) vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
{ {
auto mst = MST(features, weights, root); auto mst = MST(features, weights, root);
return mst.maximumSpanningTree(); return mst.maximumSpanningTree();

View File

@ -14,15 +14,15 @@ namespace bayesnet {
int classNumStates = 0; int classNumStates = 0;
public: public:
Metrics() = default; Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int); Metrics(const Tensor&, const vector<string>&, const string&, const int);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int); Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
double entropy(Tensor&); double entropy(const Tensor&);
double conditionalEntropy(Tensor&, Tensor&); double conditionalEntropy(const Tensor&, const Tensor&);
double mutualInformation(Tensor&, Tensor&); double mutualInformation(const Tensor&, const Tensor&);
vector<float> conditionalEdgeWeights(); // To use in Python vector<float> conditionalEdgeWeights(); // To use in Python
Tensor conditionalEdge(); Tensor conditionalEdge();
vector<pair<string, string>> doCombinations(const vector<string>&); vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root); vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
}; };
} }
#endif #endif

View File

@ -1,5 +1,7 @@
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc) KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}") target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")

View File

@ -7,61 +7,65 @@ namespace bayesnet {
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {} Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
{ {
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
this->features = features; this->features = features;
this->className = className; this->className = className;
this->states = states; this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
checkFitParameters(); checkFitParameters();
auto n_classes = states[className].size(); auto n_classes = states[className].size();
metrics = Metrics(samples, features, className, n_classes); metrics = Metrics(dataset, features, className, n_classes);
model.initialize(); model.initialize();
train(); buildModel();
if (Xv.empty()) { trainModel();
// fit with tensors
model.fit(X, y, features, className);
} else {
// fit with vectors
model.fit(Xv, yv, features, className);
}
fitted = true; fitted = true;
return *this; return *this;
} }
void Classifier::buildDataset(Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel()
{
model.fit(dataset, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples // X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = X; dataset = X;
this->y = y; buildDataset(y);
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states); return build(features, className, states);
} }
void Classifier::generateTensorXFromVector()
{
X = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, kInt32);
for (int i = 0; i < Xv.size(); ++i) {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32));
}
}
// X is nxm where n is the number of features and m the number of samples // X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
Xv = X; dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
generateTensorXFromVector(); for (int i = 0; i < X.size(); ++i) {
this->y = torch::tensor(y, kInt32); dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
yv = y; }
auto ytmp = torch::tensor(y, kInt32);
buildDataset(ytmp);
return build(features, className, states);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->dataset = dataset;
return build(features, className, states); return build(features, className, states);
} }
void Classifier::checkFitParameters() void Classifier::checkFitParameters()
{ {
auto sizes = X.sizes();
m = sizes[1];
n = sizes[0];
if (m != y.size(0)) {
throw invalid_argument("X and y must have the same number of samples");
}
if (n != features.size()) { if (n != features.size()) {
throw invalid_argument("X and features must have the same number of features"); throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
} }
if (states.find(className) == states.end()) { if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states"); throw invalid_argument("className not found in states");
@ -108,7 +112,7 @@ namespace bayesnet {
} }
return model.score(X, y); return model.score(X, y);
} }
vector<string> Classifier::show() vector<string> Classifier::show() const
{ {
return model.show(); return model.show();
} }
@ -120,16 +124,16 @@ namespace bayesnet {
} }
model.addNode(className); model.addNode(className);
} }
int Classifier::getNumberOfNodes() int Classifier::getNumberOfNodes() const
{ {
// Features does not include class // Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0; return fitted ? model.getFeatures().size() + 1 : 0;
} }
int Classifier::getNumberOfEdges() int Classifier::getNumberOfEdges() const
{ {
return fitted ? model.getEdges().size() : 0; return fitted ? model.getNumEdges() : 0;
} }
int Classifier::getNumberOfStates() int Classifier::getNumberOfStates() const
{ {
return fitted ? model.getStates() : 0; return fitted ? model.getStates() : 0;
} }
@ -137,9 +141,8 @@ namespace bayesnet {
{ {
return model.topological_sort(); return model.topological_sort();
} }
void Classifier::dump_cpt() void Classifier::dump_cpt() const
{ {
model.dump_cpt(); model.dump_cpt();
} }
} }

View File

@ -10,39 +10,37 @@ using namespace torch;
namespace bayesnet { namespace bayesnet {
class Classifier : public BaseClassifier { class Classifier : public BaseClassifier {
private: private:
bool fitted; void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states); Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
bool fitted;
Network model; Network model;
int m, n; // m: number of samples, n: number of features int m, n; // m: number of samples, n: number of features
Tensor X; // nxm tensor Tensor dataset; // (n+1)xm tensor
vector<vector<int>> Xv; // nxm vector
Tensor y;
vector<int> yv;
Tensor samples; // (n+1)xm tensor
Metrics metrics; Metrics metrics;
vector<string> features; vector<string> features;
string className; string className;
map<string, vector<int>> states; map<string, vector<int>> states;
void checkFitParameters(); void checkFitParameters();
void generateTensorXFromVector(); virtual void buildModel() = 0;
virtual void train() = 0; void trainModel() override;
public: public:
Classifier(Network model); Classifier(Network model);
virtual ~Classifier() = default; virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
void addNodes(); void addNodes();
int getNumberOfNodes() override; int getNumberOfNodes() const override;
int getNumberOfEdges() override; int getNumberOfEdges() const override;
int getNumberOfStates() override; int getNumberOfStates() const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override; vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override; float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override; float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() override; vector<string> show() const override;
vector<string> topological_order() override; vector<string> topological_order() override;
void dump_cpt() override; void dump_cpt() const override;
}; };
} }
#endif #endif

View File

@ -3,54 +3,15 @@
namespace bayesnet { namespace bayesnet {
using namespace torch; using namespace torch;
Ensemble::Ensemble() : n_models(0), metrics(Metrics()), fitted(false) {} Ensemble::Ensemble() : Classifier(Network()) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
void Ensemble::trainModel()
{ {
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(samples, features, className, n_classes);
// Build models
train();
// Train models
n_models = models.size(); n_models = models.size();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
if (Xv.empty()) { // fit with vectors
// fit with tensors models[i]->fit(dataset, features, className, states);
models[i]->fit(X, y, features, className, states);
} else {
// fit with vectors
models[i]->fit(Xv, yv, features, className, states);
}
} }
fitted = true;
return *this;
}
void Ensemble::generateTensorXFromVector()
{
X = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, kInt32);
for (int i = 0; i < Xv.size(); ++i) {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32));
}
}
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = X;
this->y = y;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states);
}
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
Xv = X;
generateTensorXFromVector();
this->y = torch::tensor(y, kInt32);
yv = y;
return build(features, className, states);
} }
vector<int> Ensemble::voting(Tensor& y_pred) vector<int> Ensemble::voting(Tensor& y_pred)
{ {
@ -132,9 +93,8 @@ namespace bayesnet {
} }
} }
return (double)correct / y_pred.size(); return (double)correct / y_pred.size();
} }
vector<string> Ensemble::show() vector<string> Ensemble::show() const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@ -143,7 +103,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Ensemble::graph(const string& title) vector<string> Ensemble::graph(const string& title) const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@ -152,7 +112,7 @@ namespace bayesnet {
} }
return result; return result;
} }
int Ensemble::getNumberOfNodes() int Ensemble::getNumberOfNodes() const
{ {
int nodes = 0; int nodes = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@ -160,7 +120,7 @@ namespace bayesnet {
} }
return nodes; return nodes;
} }
int Ensemble::getNumberOfEdges() int Ensemble::getNumberOfEdges() const
{ {
int edges = 0; int edges = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@ -168,7 +128,7 @@ namespace bayesnet {
} }
return edges; return edges;
} }
int Ensemble::getNumberOfStates() int Ensemble::getNumberOfStates() const
{ {
int nstates = 0; int nstates = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {

View File

@ -8,44 +8,31 @@ using namespace std;
using namespace torch; using namespace torch;
namespace bayesnet { namespace bayesnet {
class Ensemble : public BaseClassifier { class Ensemble : public Classifier {
private: private:
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states); Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
unsigned n_models; unsigned n_models;
bool fitted;
vector<unique_ptr<Classifier>> models; vector<unique_ptr<Classifier>> models;
Tensor X; void trainModel() override;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor samples;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
vector<int> voting(Tensor& y_pred); vector<int> voting(Tensor& y_pred);
void generateTensorXFromVector();
public: public:
Ensemble(); Ensemble();
virtual ~Ensemble() = default; virtual ~Ensemble() = default;
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Ensemble& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override; vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override; float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override; float score(vector<vector<int>>& X, vector<int>& y) override;
int getNumberOfNodes() override; int getNumberOfNodes() const override;
int getNumberOfEdges() override; int getNumberOfEdges() const override;
int getNumberOfStates() override; int getNumberOfStates() const override;
vector<string> show() override; vector<string> show() const override;
vector<string> graph(const string& title) override; vector<string> graph(const string& title) const override;
vector<string> topological_order() override vector<string> topological_order() override
{ {
return vector<string>(); return vector<string>();
} }
void dump_cpt() override void dump_cpt() const override
{ {
} }
}; };

View File

@ -4,7 +4,7 @@ namespace bayesnet {
using namespace torch; using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {} KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::train() void KDB::buildModel()
{ {
/* /*
1. For each feature Xi, compute mutual information, I(X;C), 1. For each feature Xi, compute mutual information, I(X;C),
@ -28,9 +28,10 @@ namespace bayesnet {
// 1. For each feature Xi, compute mutual information, I(X;C), // 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class. // where C is the class.
addNodes(); addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector <float> mi; vector <float> mi;
for (auto i = 0; i < features.size(); i++) { for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = X.index({ i, "..." }); Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y)); mi.push_back(metrics.mutualInformation(firstFeature, y));
} }
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each // 2. Compute class conditional mutual information I(Xi;XjIC), f or each
@ -78,7 +79,7 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0; exit_cond = num == n_edges || candidates.size(0) == 0;
} }
} }
vector<string> KDB::graph(const string& title) vector<string> KDB::graph(const string& title) const
{ {
string header{ title }; string header{ title };
if (title == "KDB") { if (title == "KDB") {

View File

@ -11,11 +11,11 @@ namespace bayesnet {
float theta; float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights); void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected: protected:
void train() override; void buildModel() override;
public: public:
explicit KDB(int k, float theta = 0.03); explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {}; virtual ~KDB() {};
vector<string> graph(const string& name = "KDB") override; vector<string> graph(const string& name = "KDB") const override;
}; };
} }
#endif #endif

View File

@ -2,7 +2,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(KDB::Xv, KDB::yv, features, className) {} KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... // This first part should go in a Classifier method called fit_local_discretization o fit_float...
@ -11,16 +11,11 @@ namespace bayesnet {
Xf = X_; Xf = X_;
y = y_; y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y); states = fit_local_discretization(y);
generateTensorXFromVector();
// We have discretized the input data // We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network // 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(KDB::Xv, KDB::yv, features, className, states); KDB::fit(dataset, features, className, states);
localDiscretizationProposal(states, model); localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(KDB::Xv, KDB::yv, features, className);
return *this; return *this;
} }
Tensor KDBLd::predict(Tensor& X) Tensor KDBLd::predict(Tensor& X)
@ -28,7 +23,7 @@ namespace bayesnet {
auto Xt = prepareX(X); auto Xt = prepareX(X);
return KDB::predict(Xt); return KDB::predict(Xt);
} }
vector<string> KDBLd::graph(const string& name) vector<string> KDBLd::graph(const string& name) const
{ {
return KDB::graph(name); return KDB::graph(name);
} }

View File

@ -11,7 +11,7 @@ namespace bayesnet {
explicit KDBLd(int k); explicit KDBLd(int k);
virtual ~KDBLd() = default; virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") override; vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
}; };

View File

@ -94,7 +94,7 @@ namespace bayesnet {
return result; return result;
} }
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {} MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree() vector<pair<int, int>> MST::maximumSpanningTree()
{ {
auto num_features = features.size(); auto num_features = features.size();

View File

@ -13,7 +13,7 @@ namespace bayesnet {
int root = 0; int root = 0;
public: public:
MST() = default; MST() = default;
MST(vector<string>& features, Tensor& weights, int root); MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree(); vector<pair<int, int>> maximumSpanningTree();
}; };
class Graph { class Graph {

View File

@ -20,7 +20,6 @@ namespace bayesnet {
classNumStates = 0; classNumStates = 0;
fitted = false; fitted = false;
nodes.clear(); nodes.clear();
dataset.clear();
samples = torch::Tensor(); samples = torch::Tensor();
} }
float Network::getmaxThreads() float Network::getmaxThreads()
@ -44,15 +43,15 @@ namespace bayesnet {
} }
nodes[name] = std::make_unique<Node>(name); nodes[name] = std::make_unique<Node>(name);
} }
vector<string> Network::getFeatures() vector<string> Network::getFeatures() const
{ {
return features; return features;
} }
int Network::getClassNumStates() int Network::getClassNumStates() const
{ {
return classNumStates; return classNumStates;
} }
int Network::getStates() int Network::getStates() const
{ {
int result = 0; int result = 0;
for (auto& node : nodes) { for (auto& node : nodes) {
@ -60,7 +59,7 @@ namespace bayesnet {
} }
return result; return result;
} }
string Network::getClassName() string Network::getClassName() const
{ {
return className; return className;
} }
@ -105,7 +104,7 @@ namespace bayesnet {
{ {
return nodes; return nodes;
} }
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className) void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
if (n_samples != n_samples_y) { if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")"); throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
@ -123,50 +122,54 @@ namespace bayesnet {
if (find(features.begin(), features.end(), feature) == features.end()) { if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features"); throw invalid_argument("Feature " + feature + " not found in Network::features");
} }
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
}
} }
} }
void Network::setStates() void Network::setStates(const map<string, vector<int>>& states)
{ {
// Set states to every Node in the network // Set states to every Node in the network
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
nodes[features[i]]->setNumStates(static_cast<int>(torch::max(samples.index({ i, "..." })).item<int>()) + 1); nodes[features[i]]->setNumStates(states.at(features[i]).size());
} }
classNumStates = nodes[className]->getNumStates(); classNumStates = nodes[className]->getNumStates();
} }
// X comes in nxm, where n is the number of features and m the number of samples // X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className) void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className); checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
this->className = className; this->className = className;
dataset.clear();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0); samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) { for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." }); auto row_feature = X.index({ i, "..." });
dataset[featureNames[i]] = vector<int>(row_feature.data_ptr<int>(), row_feature.data_ptr<int>() + row_feature.size(0));;
} }
dataset[className] = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0)); completeFit(states);
completeFit(); }
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
this->className = className;
this->samples = samples;
completeFit(states);
} }
// input_data comes in nxm, where n is the number of features and m the number of samples // input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className) void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className); checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
this->className = className; this->className = className;
dataset.clear(); // Build tensor of samples (nxm) (n+1 because of the class)
// Build dataset & tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32); samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) { for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i];
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32)); samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
} }
dataset[className] = labels;
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32)); samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(); completeFit(states);
} }
void Network::completeFit() void Network::completeFit(const map<string, vector<int>>& states)
{ {
setStates(); setStates(states);
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads); int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) { if (maxThreadsRunning < 1) {
maxThreadsRunning = 1; maxThreadsRunning = 1;
@ -188,7 +191,7 @@ namespace bayesnet {
auto& pair = *std::next(nodes.begin(), nextNodeIndex); auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex; ++nextNodeIndex;
lock.unlock(); lock.unlock();
pair.second->computeCPT(dataset, laplaceSmoothing); pair.second->computeCPT(samples, features, laplaceSmoothing);
lock.lock(); lock.lock();
nodes[pair.first] = std::move(pair.second); nodes[pair.first] = std::move(pair.second);
lock.unlock(); lock.unlock();
@ -212,7 +215,7 @@ namespace bayesnet {
torch::Tensor result; torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64); result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) { for (int i = 0; i < samples.size(1); ++i) {
auto sample = samples.index({ "...", i }); const Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample); auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64); auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64)); // result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
@ -328,12 +331,12 @@ namespace bayesnet {
mutex mtx; mutex mtx;
for (int i = 0; i < classNumStates; ++i) { for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() { threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence); auto completeEvidence = map<string, int>(evidence);
completeEvidence[getClassName()] = i; completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence); double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx); lock_guard<mutex> lock(mtx);
result[i] = factor; result[i] = factor;
}); });
} }
for (auto& thread : threads) { for (auto& thread : threads) {
thread.join(); thread.join();
@ -343,7 +346,7 @@ namespace bayesnet {
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; }); transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
return result; return result;
} }
vector<string> Network::show() vector<string> Network::show() const
{ {
vector<string> result; vector<string> result;
// Draw the network // Draw the network
@ -356,7 +359,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Network::graph(const string& title) vector<string> Network::graph(const string& title) const
{ {
auto output = vector<string>(); auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet "; auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
@ -370,7 +373,7 @@ namespace bayesnet {
output.push_back("}\n"); output.push_back("}\n");
return output; return output;
} }
vector<pair<string, string>> Network::getEdges() vector<pair<string, string>> Network::getEdges() const
{ {
auto edges = vector<pair<string, string>>(); auto edges = vector<pair<string, string>>();
for (const auto& node : nodes) { for (const auto& node : nodes) {
@ -382,6 +385,10 @@ namespace bayesnet {
} }
return edges; return edges;
} }
int Network::getNumEdges() const
{
return getEdges().size();
}
vector<string> Network::topological_sort() vector<string> Network::topological_sort()
{ {
/* Check if al the fathers of every node are before the node */ /* Check if al the fathers of every node are before the node */
@ -420,7 +427,7 @@ namespace bayesnet {
} }
return result; return result;
} }
void Network::dump_cpt() void Network::dump_cpt() const
{ {
for (auto& node : nodes) { for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl; cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;

View File

@ -8,11 +8,10 @@ namespace bayesnet {
class Network { class Network {
private: private:
map<string, unique_ptr<Node>> nodes; map<string, unique_ptr<Node>> nodes;
map<string, vector<int>> dataset;
bool fitted; bool fitted;
float maxThreads = 0.95; float maxThreads = 0.95;
int classNumStates; int classNumStates;
vector<string> features; // Including class vector<string> features; // Including classname
string className; string className;
int laplaceSmoothing = 1; int laplaceSmoothing = 1;
torch::Tensor samples; // nxm tensor used to fit the model torch::Tensor samples; // nxm tensor used to fit the model
@ -21,13 +20,9 @@ namespace bayesnet {
vector<double> predict_sample(const torch::Tensor&); vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&); vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&); double computeFactor(map<string, int>&);
double mutual_info(torch::Tensor&, torch::Tensor&); void completeFit(const map<string, vector<int>>&);
double entropy(torch::Tensor&); void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
double conditionalEntropy(torch::Tensor&, torch::Tensor&); void setStates(const map<string, vector<int>>&);
double mutualInformation(torch::Tensor&, torch::Tensor&);
void completeFit();
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className);
void setStates();
public: public:
Network(); Network();
explicit Network(float, int); explicit Network(float, int);
@ -38,26 +33,26 @@ namespace bayesnet {
void addNode(const string&); void addNode(const string&);
void addEdge(const string&, const string&); void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes(); map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures(); vector<string> getFeatures() const;
int getStates(); int getStates() const;
vector<pair<string, string>> getEdges(); vector<pair<string, string>> getEdges() const;
int getClassNumStates(); int getNumEdges() const;
string getClassName(); int getClassNumStates() const;
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&); string getClassName() const;
void fit(torch::Tensor&, torch::Tensor&, const vector<string>&, const string&); void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
//Computes the conditional edge weight of variable index u and v conditioned on class_node
torch::Tensor conditionalEdgeWeight();
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba); torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&); double score(const vector<vector<int>>&, const vector<int>&);
vector<string> topological_sort(); vector<string> topological_sort();
vector<string> show(); vector<string> show() const;
vector<string> graph(const string& title); // Returns a vector of strings representing the graph in graphviz format vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize(); void initialize();
void dump_cpt(); void dump_cpt() const;
inline string version() { return "0.1.0"; } inline string version() { return "0.1.0"; }
}; };
} }

View File

@ -84,7 +84,7 @@ namespace bayesnet {
} }
return result; return result;
} }
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing) void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
{ {
dimensions.clear(); dimensions.clear();
// Get dimensions of the CPT // Get dimensions of the CPT
@ -94,10 +94,22 @@ namespace bayesnet {
// Create a tensor of zeros with the dimensions of the CPT // Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing; cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts // Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) { auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates; torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample])); coordinates.push_back(dataset.index({ name_index, n_sample }));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&dataset, &n_sample](const auto& parent) { return torch::tensor(dataset[parent->getName()][n_sample]); }); for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
}
// Increment the count of the corresponding coordinate // Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1); cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
} }

View File

@ -26,7 +26,7 @@ namespace bayesnet {
vector<Node*>& getParents(); vector<Node*>& getParents();
vector<Node*>& getChildren(); vector<Node*>& getChildren();
torch::Tensor& getCPT(); torch::Tensor& getCPT();
void computeCPT(map<string, vector<int>>&, const int); void computeCPT(const torch::Tensor&, const vector<string>&, const int);
int getNumStates() const; int getNumStates() const;
void setNumStates(int); void setNumStates(int);
unsigned minFill(); unsigned minFill();

View File

@ -2,7 +2,7 @@
#include "ArffFiles.h" #include "ArffFiles.h"
namespace bayesnet { namespace bayesnet {
Proposal::Proposal(vector<vector<int>>& Xv_, vector<int>& yv_, vector<string>& features_, string& className_) : Xv(Xv_), yv(yv_), pFeatures(features_), pClassName(className_) {} Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal() Proposal::~Proposal()
{ {
for (auto& [key, value] : discretizers) { for (auto& [key, value] : discretizers) {
@ -16,7 +16,6 @@ namespace bayesnet {
auto order = model.topological_sort(); auto order = model.topological_sort();
auto& nodes = model.getNodes(); auto& nodes = model.getNodes();
vector<int> indicesToReDiscretize; vector<int> indicesToReDiscretize;
auto n_samples = Xf.size(1);
bool upgrade = false; // Flag to check if we need to upgrade the model bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) { for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents(); auto nodeParents = nodes[feature]->getParents();
@ -30,13 +29,13 @@ namespace bayesnet {
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end()); parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents // Get the indices of the parents
vector<int> indices; vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); }); transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y) // Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents; vector<string> yJoinParents(Xf.size(1));
transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); });
for (auto idx : indices) { for (auto idx : indices) {
for (int i = 0; i < n_samples; ++i) { for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(Xv[idx][i]); yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
} }
} }
auto arff = ArffFiles(); auto arff = ArffFiles();
@ -59,26 +58,30 @@ namespace bayesnet {
for (auto index : indicesToReDiscretize) { for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>(); auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1)); auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
Xv[index] = discretizers[pFeatures[index]]->transform(Xt); pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1); auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0); iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node //Update new states of the feature/node
states[pFeatures[index]] = xStates; states[pFeatures[index]] = xStates;
} }
model.fit(pDataset, pFeatures, pClassName, states);
} }
} }
void Proposal::fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y) map<string, vector<int>> Proposal::fit_local_discretization(torch::Tensor& y)
{ {
// Sharing Xv and yv with Classifier // Discretize the continuous input data and build pDataset (Classifier::dataset)
Xv = vector<vector<int>>(); int m = Xf.size(1);
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0)); int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row) // discretize input data by feature(row)
for (int i = 0; i < pFeatures.size(); ++i) { for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp(); auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>(); auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1)); auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv); discretizer->fit(Xt, yv);
Xv.push_back(discretizer->transform(Xt)); pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1); auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0); iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates; states[pFeatures[i]] = xStates;
@ -88,6 +91,8 @@ namespace bayesnet {
auto yStates = vector<int>(n_classes); auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0); iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates; states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
} }
torch::Tensor Proposal::prepareX(torch::Tensor& X) torch::Tensor Proposal::prepareX(torch::Tensor& X)
{ {

View File

@ -10,20 +10,20 @@
namespace bayesnet { namespace bayesnet {
class Proposal { class Proposal {
public: public:
Proposal(vector<vector<int>>& Xv_, vector<int>& yv_, vector<string>& features_, string& className_); Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal(); virtual ~Proposal();
protected: protected:
torch::Tensor prepareX(torch::Tensor& X); torch::Tensor prepareX(torch::Tensor& X);
void localDiscretizationProposal(map<string, vector<int>>& states, Network& model); void localDiscretizationProposal(map<string, vector<int>>& states, Network& model);
void fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y); map<string, vector<int>> fit_local_discretization(torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers; map<string, mdlp::CPPFImdlp*> discretizers;
private: private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures; vector<string>& pFeatures;
string& pClassName; string& pClassName;
vector<vector<int>>& Xv; // X discrete nxm vector
vector<int>& yv;
}; };
} }
#endif #endif

View File

@ -4,7 +4,7 @@ namespace bayesnet {
SPODE::SPODE(int root) : Classifier(Network()), root(root) {} SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::train() void SPODE::buildModel()
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
@ -17,7 +17,7 @@ namespace bayesnet {
} }
} }
} }
vector<string> SPODE::graph(const string& name) vector<string> SPODE::graph(const string& name) const
{ {
return model.graph(name); return model.graph(name);
} }

View File

@ -7,11 +7,11 @@ namespace bayesnet {
private: private:
int root; int root;
protected: protected:
void train() override; void buildModel() override;
public: public:
explicit SPODE(int root); explicit SPODE(int root);
virtual ~SPODE() {}; virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") override; vector<string> graph(const string& name = "SPODE") const override;
}; };
} }
#endif #endif

View File

@ -2,7 +2,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(SPODE::Xv, SPODE::yv, features, className) {} SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... // This first part should go in a Classifier method called fit_local_discretization o fit_float...
@ -11,24 +11,36 @@ namespace bayesnet {
Xf = X_; Xf = X_;
y = y_; y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y); states = fit_local_discretization(y);
generateTensorXFromVector();
// We have discretized the input data // We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network // 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(SPODE::Xv, SPODE::yv, features, className, states); SPODE::fit(dataset, features, className, states);
localDiscretizationProposal(states, model); localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(SPODE::Xv, SPODE::yv, features, className);
return *this; return *this;
} }
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
localDiscretizationProposal(states, model);
return *this;
}
Tensor SPODELd::predict(Tensor& X) Tensor SPODELd::predict(Tensor& X)
{ {
auto Xt = prepareX(X); auto Xt = prepareX(X);
return SPODE::predict(Xt); return SPODE::predict(Xt);
} }
vector<string> SPODELd::graph(const string& name) vector<string> SPODELd::graph(const string& name) const
{ {
return SPODE::graph(name); return SPODE::graph(name);
} }

View File

@ -6,12 +6,12 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
class SPODELd : public SPODE, public Proposal { class SPODELd : public SPODE, public Proposal {
private:
public: public:
explicit SPODELd(int root); explicit SPODELd(int root);
virtual ~SPODELd() = default; virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") override; SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
}; };

View File

@ -5,16 +5,16 @@ namespace bayesnet {
TAN::TAN() : Classifier(Network()) {} TAN::TAN() : Classifier(Network()) {}
void TAN::train() void TAN::buildModel()
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
// 1. Compute mutual information between each feature and the class and set the root node // 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class // as the highest mutual information with the class
auto mi = vector <pair<int, float >>(); auto mi = vector <pair<int, float >>();
Tensor class_dataset = samples.index({ -1, "..." }); Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) { for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = samples.index({ i, "..." }); Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset); auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
mi.push_back({ i, mi_value }); mi.push_back({ i, mi_value });
} }
@ -34,7 +34,7 @@ namespace bayesnet {
model.addEdge(className, feature); model.addEdge(className, feature);
} }
} }
vector<string> TAN::graph(const string& title) vector<string> TAN::graph(const string& title) const
{ {
return model.graph(title); return model.graph(title);
} }

View File

@ -7,11 +7,11 @@ namespace bayesnet {
class TAN : public Classifier { class TAN : public Classifier {
private: private:
protected: protected:
void train() override; void buildModel() override;
public: public:
TAN(); TAN();
virtual ~TAN() {}; virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") override; vector<string> graph(const string& name = "TAN") const override;
}; };
} }
#endif #endif

View File

@ -2,7 +2,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
TANLd::TANLd() : TAN(), Proposal(TAN::Xv, TAN::yv, features, className) {} TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{ {
// This first part should go in a Classifier method called fit_local_discretization o fit_float... // This first part should go in a Classifier method called fit_local_discretization o fit_float...
@ -11,24 +11,20 @@ namespace bayesnet {
Xf = X_; Xf = X_;
y = y_; y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y); states = fit_local_discretization(y);
generateTensorXFromVector();
// We have discretized the input data // We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(TAN::Xv, TAN::yv, features, className, states); TAN::fit(dataset, features, className, states);
localDiscretizationProposal(states, model); localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(TAN::Xv, TAN::yv, features, className);
return *this; return *this;
} }
Tensor TANLd::predict(Tensor& X) Tensor TANLd::predict(Tensor& X)
{ {
auto Xt = prepareX(X); auto Xt = prepareX(X);
return TAN::predict(Xt); return TAN::predict(Xt);
} }
vector<string> TANLd::graph(const string& name) vector<string> TANLd::graph(const string& name) const
{ {
return TAN::graph(name); return TAN::graph(name);
} }

View File

@ -11,7 +11,7 @@ namespace bayesnet {
TANLd(); TANLd();
virtual ~TANLd() = default; virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") override; vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override; Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; }; static inline string version() { return "0.0.1"; };
}; };

View File

@ -4,6 +4,7 @@ namespace platform {
string headerLine(const string& text) string headerLine(const string& text)
{ {
int n = MAXL - text.length() - 3; int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + string(n, ' ') + "*\n"; return "* " + text + string(n, ' ') + "*\n";
} }
string Report::fromVector(const string& key) string Report::fromVector(const string& key)
@ -13,7 +14,7 @@ namespace platform {
for (auto& item : data[key]) { for (auto& item : data[key]) {
result += to_string(item) + ", "; result += to_string(item) + ", ";
} }
return "[" + result.substr(0, result.length() - 2) + "]"; return "[" + result.substr(0, result.size() - 2) + "]";
} }
string fVector(const json& data) string fVector(const json& data)
{ {
@ -21,7 +22,7 @@ namespace platform {
for (const auto& item : data) { for (const auto& item : data) {
result += to_string(item) + ", "; result += to_string(item) + ", ";
} }
return "[" + result.substr(0, result.length() - 2) + "]"; return "[" + result.substr(0, result.size() - 2) + "]";
} }
void Report::show() void Report::show()
{ {