optimize_memory #2
4
.vscode/launch.json
vendored
4
.vscode/launch.json
vendored
@ -25,12 +25,12 @@
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"args": [
|
||||
"-m",
|
||||
"AODELd",
|
||||
"TANLd",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"iris"
|
||||
"vehicle"
|
||||
],
|
||||
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
},
|
||||
|
@ -37,7 +37,7 @@ namespace bayesnet {
|
||||
}
|
||||
void Classifier::trainModel()
|
||||
{
|
||||
model.fit(dataset, features, className);
|
||||
model.fit(dataset, features, className, states);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
|
@ -104,7 +104,7 @@ namespace bayesnet {
|
||||
{
|
||||
return nodes;
|
||||
}
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className)
|
||||
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
if (n_samples != n_samples_y) {
|
||||
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
|
||||
@ -122,39 +122,42 @@ namespace bayesnet {
|
||||
if (find(features.begin(), features.end(), feature) == features.end()) {
|
||||
throw invalid_argument("Feature " + feature + " not found in Network::features");
|
||||
}
|
||||
if (states.find(feature) == states.end()) {
|
||||
throw invalid_argument("Feature " + feature + " not found in states");
|
||||
}
|
||||
}
|
||||
void Network::setStates()
|
||||
}
|
||||
void Network::setStates(const map<string, vector<int>>& states)
|
||||
{
|
||||
// Set states to every Node in the network
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
nodes[features[i]]->setNumStates(static_cast<int>(torch::max(samples.index({ i, "..." })).item<int>()) + 1);
|
||||
nodes[features[i]]->setNumStates(states.at(features[i]).size());
|
||||
}
|
||||
classNumStates = nodes[className]->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className);
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
|
||||
this->className = className;
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
samples = torch::cat({ X , ytmp }, 0);
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit();
|
||||
completeFit(states);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className)
|
||||
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className);
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
|
||||
this->className = className;
|
||||
this->samples = samples;
|
||||
completeFit();
|
||||
completeFit(states);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
|
||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||
{
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
|
||||
this->className = className;
|
||||
// Build tensor of samples (nxm) (n+1 because of the class)
|
||||
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
|
||||
@ -162,11 +165,11 @@ namespace bayesnet {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit();
|
||||
completeFit(states);
|
||||
}
|
||||
void Network::completeFit()
|
||||
void Network::completeFit(const map<string, vector<int>>& states)
|
||||
{
|
||||
setStates();
|
||||
setStates(states);
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
if (maxThreadsRunning < 1) {
|
||||
maxThreadsRunning = 1;
|
||||
@ -212,7 +215,7 @@ namespace bayesnet {
|
||||
torch::Tensor result;
|
||||
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
auto sample = samples.index({ "...", i });
|
||||
const Tensor sample = samples.index({ "...", i });
|
||||
auto psample = predict_sample(sample);
|
||||
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
||||
|
@ -20,13 +20,9 @@ namespace bayesnet {
|
||||
vector<double> predict_sample(const torch::Tensor&);
|
||||
vector<double> exactInference(map<string, int>&);
|
||||
double computeFactor(map<string, int>&);
|
||||
double mutual_info(torch::Tensor&, torch::Tensor&);
|
||||
double entropy(torch::Tensor&);
|
||||
double conditionalEntropy(torch::Tensor&, torch::Tensor&);
|
||||
double mutualInformation(torch::Tensor&, torch::Tensor&);
|
||||
void completeFit();
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className);
|
||||
void setStates();
|
||||
void completeFit(const map<string, vector<int>>&);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
|
||||
void setStates(const map<string, vector<int>>&);
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float, int);
|
||||
@ -43,13 +39,11 @@ namespace bayesnet {
|
||||
int getNumEdges() const;
|
||||
int getClassNumStates() const;
|
||||
string getClassName() const;
|
||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
|
||||
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&);
|
||||
void fit(const torch::Tensor&, const vector<string>&, const string&);
|
||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
//Computes the conditional edge weight of variable index u and v conditioned on class_node
|
||||
torch::Tensor conditionalEdgeWeight();
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
|
||||
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
|
||||
|
@ -64,7 +64,7 @@ namespace bayesnet {
|
||||
//Update new states of the feature/node
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
model.fit(pDataset, pFeatures, pClassName);
|
||||
model.fit(pDataset, pFeatures, pClassName, states);
|
||||
}
|
||||
}
|
||||
void Proposal::fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y)
|
||||
|
@ -4,6 +4,7 @@ namespace platform {
|
||||
string headerLine(const string& text)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + string(n, ' ') + "*\n";
|
||||
}
|
||||
string Report::fromVector(const string& key)
|
||||
@ -13,7 +14,7 @@ namespace platform {
|
||||
for (auto& item : data[key]) {
|
||||
result += to_string(item) + ", ";
|
||||
}
|
||||
return "[" + result.substr(0, result.length() - 2) + "]";
|
||||
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||
}
|
||||
string fVector(const json& data)
|
||||
{
|
||||
@ -21,7 +22,7 @@ namespace platform {
|
||||
for (const auto& item : data) {
|
||||
result += to_string(item) + ", ";
|
||||
}
|
||||
return "[" + result.substr(0, result.length() - 2) + "]";
|
||||
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||
}
|
||||
void Report::show()
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user