|
|
|
@ -156,7 +156,7 @@ TEST_CASE("BoostAODE feature_select CFS", "[BayesNet]")
|
|
|
|
|
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
|
|
|
|
|
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
|
|
|
|
}
|
|
|
|
|
TEST_CASE("BoostAODE test used features in train note", "[BayesNet]")
|
|
|
|
|
TEST_CASE("BoostAODE test used features in train note and score", "[BayesNet]")
|
|
|
|
|
{
|
|
|
|
|
auto raw = RawDatasets("diabetes", true);
|
|
|
|
|
auto clf = bayesnet::BoostAODE();
|
|
|
|
@ -173,9 +173,25 @@ TEST_CASE("BoostAODE test used features in train note", "[BayesNet]")
|
|
|
|
|
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
|
|
|
|
REQUIRE(clf.getNotes()[1] == "Used features in train: 7 of 8");
|
|
|
|
|
REQUIRE(clf.getNotes()[2] == "Number of models: 8");
|
|
|
|
|
auto score = clf.score(raw.Xv, raw.yv);
|
|
|
|
|
auto scoret = clf.score(raw.Xt, raw.yt);
|
|
|
|
|
REQUIRE(score == Catch::Approx(0.8138).epsilon(raw.epsilon));
|
|
|
|
|
REQUIRE(scoret == Catch::Approx(0.8138).epsilon(raw.epsilon));
|
|
|
|
|
}
|
|
|
|
|
TEST_CASE("TAN predict_proba", "[BayesNet]")
|
|
|
|
|
{
|
|
|
|
|
auto res_prob = std::vector<std::vector<double>>({
|
|
|
|
|
{ 0.00375671, 0.994457, 0.00178621 },
|
|
|
|
|
{ 0.00137462, 0.992734, 0.00589123 },
|
|
|
|
|
{ 0.00137462, 0.992734, 0.00589123 },
|
|
|
|
|
{ 0.00137462, 0.992734, 0.00589123 },
|
|
|
|
|
{ 0.00218225, 0.992877, 0.00494094 },
|
|
|
|
|
{ 0.00494209, 0.0978534, 0.897205 },
|
|
|
|
|
{ 0.0054192, 0.974275, 0.0203054 },
|
|
|
|
|
{ 0.00433012, 0.985054, 0.0106159 },
|
|
|
|
|
{ 0.000860806, 0.996922, 0.00221698 }
|
|
|
|
|
});
|
|
|
|
|
int init_index = 78;
|
|
|
|
|
auto raw = RawDatasets("iris", true);
|
|
|
|
|
auto clf = bayesnet::TAN();
|
|
|
|
|
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
|
|
|
@ -191,25 +207,54 @@ TEST_CASE("TAN predict_proba", "[BayesNet]")
|
|
|
|
|
auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
|
|
|
|
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
|
|
|
|
REQUIRE(predictedClass == y_pred[i]);
|
|
|
|
|
// Check predict is coherent with predict_proba
|
|
|
|
|
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
|
|
|
|
}
|
|
|
|
|
// Check predict_proba values for vectors and tensors
|
|
|
|
|
for (int i = 0; i < res_prob.size(); i++) {
|
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
|
|
|
REQUIRE(res_prob[i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
|
|
|
|
REQUIRE(res_prob[i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
TEST_CASE("BoostAODE predict_proba voting", "[BayesNet]")
|
|
|
|
|
{
|
|
|
|
|
// auto res_prob = std::vector<std::vector<double>>({
|
|
|
|
|
// { 0.00375671, 0.994457, 0.00178621 },
|
|
|
|
|
// { 0.00137462, 0.992734, 0.00589123 },
|
|
|
|
|
// { 0.00137462, 0.992734, 0.00589123 },
|
|
|
|
|
// { 0.00137462, 0.992734, 0.00589123 },
|
|
|
|
|
// { 0.00218225, 0.992877, 0.00494094 },
|
|
|
|
|
// { 0.00494209, 0.0978534, 0.897205 },
|
|
|
|
|
// { 0.0054192, 0.974275, 0.0203054 },
|
|
|
|
|
// { 0.00433012, 0.985054, 0.0106159 },
|
|
|
|
|
// { 0.000860806, 0.996922, 0.00221698 }
|
|
|
|
|
// });
|
|
|
|
|
// int init_index = 78;
|
|
|
|
|
auto raw = RawDatasets("iris", true);
|
|
|
|
|
auto clf = bayesnet::BoostAODE(true);
|
|
|
|
|
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
|
|
|
|
auto y_pred_proba = clf.predict_proba(raw.Xv);
|
|
|
|
|
auto y_pred = clf.predict(raw.Xv);
|
|
|
|
|
auto yt_pred_proba = clf.predict_proba(raw.Xt);
|
|
|
|
|
// REQUIRE(y_pred.size() == y_pred_proba.size());
|
|
|
|
|
// REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
|
|
|
|
// REQUIRE(y_pred.size() == raw.yv.size());
|
|
|
|
|
// REQUIRE(y_pred_proba[0].size() == 3);
|
|
|
|
|
// REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
|
|
|
|
// for (int i = 0; i < y_pred_proba.size(); ++i) {
|
|
|
|
|
// auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
|
|
|
|
// int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
|
|
|
|
// REQUIRE(predictedClass == y_pred[i]);
|
|
|
|
|
// // Check predict is coherent with predict_proba
|
|
|
|
|
// REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
|
|
|
|
// }
|
|
|
|
|
// // Check predict_proba values for vectors and tensors
|
|
|
|
|
// for (int i = 0; i < res_prob.size(); i++) {
|
|
|
|
|
// for (int j = 0; j < 3; j++) {
|
|
|
|
|
// REQUIRE(res_prob[i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
|
|
|
|
// REQUIRE(res_prob[i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TEST_CASE("BoostAODE predict_proba", "[BayesNet]")
|
|
|
|
|
// {
|
|
|
|
|
// auto raw = RawDatasets("iris", true);
|
|
|
|
|
// auto clf = bayesnet::BoostAODE();
|
|
|
|
|
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
|
|
|
|
// auto y_pred = clf.predict_proba(raw.Xv);
|
|
|
|
|
// REQUIRE(y_pred.size(0) == raw.yv.size(0));
|
|
|
|
|
// REQUIRE(y_pred.size(1) == 3);
|
|
|
|
|
// auto y_pred2 = clf.predict_proba(raw.Xv);
|
|
|
|
|
// REQUIRE(y_pred2.size(0) == raw.yv.size(0));
|
|
|
|
|
// REQUIRE(y_pred2.size(1) == 3);
|
|
|
|
|
// REQUIRE(y_pred.equal(y_pred2));
|
|
|
|
|
// for (int i = 0; i < y_pred.size(0); ++i) {
|
|
|
|
|
// for (int j = 0; j < y_pred.size(1); ++j) {
|
|
|
|
|
// REQUIRE(y_pred[i][j].item<float>() == y_pred2[i][j].item<float>());
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|