change boostaode ascending hyperparameter to order {asc,desc,rand}
This commit is contained in:
parent
43dc79a345
commit
fc3d63b7db
@ -5,6 +5,12 @@ All notable changes to this project will be documented in this file.
|
|||||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
||||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
|
## [Unreleased]
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Change _ascending_ hyperparameter to _order_ with these possible values _{"asc", "desc", "rand"}_
|
||||||
|
|
||||||
## [1.0.3]
|
## [1.0.3]
|
||||||
|
|
||||||
### Added
|
### Added
|
||||||
|
@ -10,7 +10,7 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
|
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
|
||||||
{
|
{
|
||||||
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance", "predict_voting" };
|
validHyperparameters = { "repeatSparent", "maxModels", "order", "convergence", "threshold", "select_features", "tolerance", "predict_voting" };
|
||||||
|
|
||||||
}
|
}
|
||||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||||
@ -57,9 +57,13 @@ namespace bayesnet {
|
|||||||
maxModels = hyperparameters["maxModels"];
|
maxModels = hyperparameters["maxModels"];
|
||||||
hyperparameters.erase("maxModels");
|
hyperparameters.erase("maxModels");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("ascending")) {
|
if (hyperparameters.contains("order")) {
|
||||||
ascending = hyperparameters["ascending"];
|
std::vector<std::string> algos = { "asc", "desc", "rand" };
|
||||||
hyperparameters.erase("ascending");
|
order_algorithm = hyperparameters["order"];
|
||||||
|
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||||
|
throw std::invalid_argument("Invalid order algorithm, valid values [asc, desc, rand]");
|
||||||
|
}
|
||||||
|
hyperparameters.erase("order");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("convergence")) {
|
if (hyperparameters.contains("convergence")) {
|
||||||
convergence = hyperparameters["convergence"];
|
convergence = hyperparameters["convergence"];
|
||||||
@ -81,9 +85,9 @@ namespace bayesnet {
|
|||||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||||
std::vector<std::string> algos = { "IWSS", "FCBF", "CFS" };
|
std::vector<std::string> algos = { "IWSS", "FCBF", "CFS" };
|
||||||
selectFeatures = true;
|
selectFeatures = true;
|
||||||
algorithm = selectedAlgorithm;
|
select_features_algorithm = selectedAlgorithm;
|
||||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||||
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
throw std::invalid_argument("Invalid selectFeatures value, valid values [IWSS, FCBF, CFS]");
|
||||||
}
|
}
|
||||||
hyperparameters.erase("select_features");
|
hyperparameters.erase("select_features");
|
||||||
}
|
}
|
||||||
@ -96,14 +100,14 @@ namespace bayesnet {
|
|||||||
std::unordered_set<int> featuresUsed;
|
std::unordered_set<int> featuresUsed;
|
||||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
int maxFeatures = 0;
|
int maxFeatures = 0;
|
||||||
if (algorithm == "CFS") {
|
if (select_features_algorithm == "CFS") {
|
||||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||||
} else if (algorithm == "IWSS") {
|
} else if (select_features_algorithm == "IWSS") {
|
||||||
if (threshold < 0 || threshold >0.5) {
|
if (threshold < 0 || threshold >0.5) {
|
||||||
throw std::invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
|
throw std::invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
|
||||||
}
|
}
|
||||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||||
} else if (algorithm == "FCBF") {
|
} else if (select_features_algorithm == "FCBF") {
|
||||||
if (threshold < 1e-7 || threshold > 1) {
|
if (threshold < 1e-7 || threshold > 1) {
|
||||||
throw std::invalid_argument("Invalid threshold value [1e-7, 1]");
|
throw std::invalid_argument("Invalid threshold value [1e-7, 1]");
|
||||||
}
|
}
|
||||||
@ -120,7 +124,7 @@ namespace bayesnet {
|
|||||||
significanceModels.push_back(1.0);
|
significanceModels.push_back(1.0);
|
||||||
n_models++;
|
n_models++;
|
||||||
}
|
}
|
||||||
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + algorithm);
|
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||||
delete featureSelector;
|
delete featureSelector;
|
||||||
return featuresUsed;
|
return featuresUsed;
|
||||||
}
|
}
|
||||||
@ -150,10 +154,14 @@ namespace bayesnet {
|
|||||||
// n_models == maxModels
|
// n_models == maxModels
|
||||||
// epsilon sub t > 0.5 => inverse the weights policy
|
// epsilon sub t > 0.5 => inverse the weights policy
|
||||||
// validation error is not decreasing
|
// validation error is not decreasing
|
||||||
|
bool ascending = order_algorithm == "asc";
|
||||||
|
std::mt19937 g{ 173 };
|
||||||
while (!exitCondition) {
|
while (!exitCondition) {
|
||||||
// Step 1: Build ranking with mutual information
|
// Step 1: Build ranking with mutual information
|
||||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||||
std::unique_ptr<Classifier> model;
|
if (order_algorithm == "rand") {
|
||||||
|
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||||
|
}
|
||||||
auto feature = featureSelection[0];
|
auto feature = featureSelection[0];
|
||||||
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
|
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
|
||||||
bool used = true;
|
bool used = true;
|
||||||
@ -170,6 +178,7 @@ namespace bayesnet {
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
std::unique_ptr<Classifier> model;
|
||||||
model = std::make_unique<SPODE>(feature);
|
model = std::make_unique<SPODE>(feature);
|
||||||
model->fit(dataset, features, className, states, weights_);
|
model->fit(dataset, features, className, states, weights_);
|
||||||
auto ypred = model->predict(X_train);
|
auto ypred = model->predict(X_train);
|
||||||
|
@ -22,10 +22,10 @@ namespace bayesnet {
|
|||||||
bool repeatSparent = false; // if true, a feature can be selected more than once
|
bool repeatSparent = false; // if true, a feature can be selected more than once
|
||||||
int maxModels = 0;
|
int maxModels = 0;
|
||||||
int tolerance = 0;
|
int tolerance = 0;
|
||||||
bool ascending = false; //Process KBest features ascending or descending order
|
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||||
bool convergence = false; //if true, stop when the model does not improve
|
bool convergence = false; //if true, stop when the model does not improve
|
||||||
bool selectFeatures = false; // if true, use feature selection
|
bool selectFeatures = false; // if true, use feature selection
|
||||||
std::string algorithm = ""; // Selected feature selection algorithm
|
std::string select_features_algorithm = ""; // Selected feature selection algorithm
|
||||||
FeatureSelect* featureSelector = nullptr;
|
FeatureSelect* featureSelector = nullptr;
|
||||||
double threshold = -1;
|
double threshold = -1;
|
||||||
};
|
};
|
||||||
|
@ -17,7 +17,7 @@ const std::string ACTUAL_VERSION = "1.0.3";
|
|||||||
|
|
||||||
TEST_CASE("Test Bayesian Classifiers score & version", "[BayesNet]")
|
TEST_CASE("Test Bayesian Classifiers score & version", "[BayesNet]")
|
||||||
{
|
{
|
||||||
map <pair<std::string, std::string>, float> scores = {
|
map <pair<std::string, std::string>, float> scores{
|
||||||
// Diabetes
|
// Diabetes
|
||||||
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||||
{{"diabetes", "AODELd"}, 0.8138f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.78646f}, {{"diabetes", "TANLd"}, 0.8099f}, {{"diabetes", "BoostAODE"}, 0.83984f},
|
{{"diabetes", "AODELd"}, 0.8138f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.78646f}, {{"diabetes", "TANLd"}, 0.8099f}, {{"diabetes", "BoostAODE"}, 0.83984f},
|
||||||
@ -31,7 +31,7 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[BayesNet]")
|
|||||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
|
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
|
||||||
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
|
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
|
||||||
};
|
};
|
||||||
std::map<std::string, bayesnet::BaseClassifier*> models = {
|
std::map<std::string, bayesnet::BaseClassifier*> models{
|
||||||
{"AODE", new bayesnet::AODE()}, {"AODELd", new bayesnet::AODELd()},
|
{"AODE", new bayesnet::AODE()}, {"AODELd", new bayesnet::AODELd()},
|
||||||
{"BoostAODE", new bayesnet::BoostAODE()},
|
{"BoostAODE", new bayesnet::BoostAODE()},
|
||||||
{"KDB", new bayesnet::KDB(2)}, {"KDBLd", new bayesnet::KDBLd(2)},
|
{"KDB", new bayesnet::KDB(2)}, {"KDBLd", new bayesnet::KDBLd(2)},
|
||||||
@ -104,7 +104,7 @@ TEST_CASE("BoostAODE test used features in train note and score", "[BayesNet]")
|
|||||||
auto raw = RawDatasets("diabetes", true);
|
auto raw = RawDatasets("diabetes", true);
|
||||||
auto clf = bayesnet::BoostAODE(true);
|
auto clf = bayesnet::BoostAODE(true);
|
||||||
clf.setHyperparameters({
|
clf.setHyperparameters({
|
||||||
{"ascending",true},
|
{"order", "asc"},
|
||||||
{"convergence", true},
|
{"convergence", true},
|
||||||
{"repeatSparent",true},
|
{"repeatSparent",true},
|
||||||
{"select_features","CFS"},
|
{"select_features","CFS"},
|
||||||
@ -168,8 +168,8 @@ TEST_CASE("Model predict_proba", "[BayesNet]")
|
|||||||
{0, 1, 0},
|
{0, 1, 0},
|
||||||
{0, 1, 0}
|
{0, 1, 0}
|
||||||
});
|
});
|
||||||
std::map<std::string, std::vector<std::vector<double>>> res_prob = { {"TAN", res_prob_tan}, {"SPODE", res_prob_spode} , {"BoostAODEproba", res_prob_baode }, {"BoostAODEvoting", res_prob_voting } };
|
std::map<std::string, std::vector<std::vector<double>>> res_prob{ {"TAN", res_prob_tan}, {"SPODE", res_prob_spode} , {"BoostAODEproba", res_prob_baode }, {"BoostAODEvoting", res_prob_voting } };
|
||||||
std::map<std::string, bayesnet::BaseClassifier*> models = { {"TAN", new bayesnet::TAN()}, {"SPODE", new bayesnet::SPODE(0)}, {"BoostAODEproba", new bayesnet::BoostAODE(false)}, {"BoostAODEvoting", new bayesnet::BoostAODE(true)} };
|
std::map<std::string, bayesnet::BaseClassifier*> models{ {"TAN", new bayesnet::TAN()}, {"SPODE", new bayesnet::SPODE(0)}, {"BoostAODEproba", new bayesnet::BoostAODE(false)}, {"BoostAODEvoting", new bayesnet::BoostAODE(true)} };
|
||||||
int init_index = 78;
|
int init_index = 78;
|
||||||
auto raw = RawDatasets("iris", true);
|
auto raw = RawDatasets("iris", true);
|
||||||
|
|
||||||
@ -178,9 +178,9 @@ TEST_CASE("Model predict_proba", "[BayesNet]")
|
|||||||
auto clf = models[model];
|
auto clf = models[model];
|
||||||
clf->fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
clf->fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||||
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
||||||
|
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
||||||
auto y_pred = clf->predict(raw.Xv);
|
auto y_pred = clf->predict(raw.Xv);
|
||||||
auto yt_pred = clf->predict(raw.Xt);
|
auto yt_pred = clf->predict(raw.Xt);
|
||||||
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
|
||||||
REQUIRE(y_pred.size() == yt_pred.size(0));
|
REQUIRE(y_pred.size() == yt_pred.size(0));
|
||||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||||
@ -193,6 +193,9 @@ TEST_CASE("Model predict_proba", "[BayesNet]")
|
|||||||
REQUIRE(predictedClass == y_pred[i]);
|
REQUIRE(predictedClass == y_pred[i]);
|
||||||
// Check predict is coherent with predict_proba
|
// Check predict is coherent with predict_proba
|
||||||
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||||
|
for (int j = 0; j < yt_pred_proba.size(1); j++) {
|
||||||
|
REQUIRE(yt_pred_proba[i][j].item<double>() == Catch::Approx(y_pred_proba[i][j]).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
// Check predict_proba values for vectors and tensors
|
// Check predict_proba values for vectors and tensors
|
||||||
for (int i = 0; i < res_prob.size(); i++) {
|
for (int i = 0; i < res_prob.size(); i++) {
|
||||||
@ -222,3 +225,25 @@ TEST_CASE("BoostAODE voting-proba", "[BayesNet]")
|
|||||||
REQUIRE(pred_voting[83][2] == Catch::Approx(0.552091).epsilon(raw.epsilon));
|
REQUIRE(pred_voting[83][2] == Catch::Approx(0.552091).epsilon(raw.epsilon));
|
||||||
REQUIRE(pred_proba[83][2] == Catch::Approx(0.546017).epsilon(raw.epsilon));
|
REQUIRE(pred_proba[83][2] == Catch::Approx(0.546017).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
|
TEST_CASE("BoostAODE order asc, desc & random", "[BayesNet]")
|
||||||
|
{
|
||||||
|
|
||||||
|
auto raw = RawDatasets("glass", true);
|
||||||
|
std::map<std::string, double> scores{
|
||||||
|
{"asc", 0.83178f }, { "desc", 0.84579f }, { "rand", 0.83645f }
|
||||||
|
};
|
||||||
|
for (const std::string& order : { "asc", "desc", "rand" }) {
|
||||||
|
auto clf = bayesnet::BoostAODE();
|
||||||
|
clf.setHyperparameters({
|
||||||
|
{"order", order},
|
||||||
|
});
|
||||||
|
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||||
|
auto score = clf.score(raw.Xv, raw.yv);
|
||||||
|
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||||
|
auto score2 = clf.score(raw.Xv, raw.yv);
|
||||||
|
auto scoret2 = clf.score(raw.Xt, raw.yt);
|
||||||
|
INFO("order: " + order);
|
||||||
|
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
|
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user