From d39a17089ef13e7430dc603a0e8a39ad76c5a6d9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ricardo=20Monta=C3=B1ana=20G=C3=B3mez?= Date: Mon, 26 Feb 2024 20:29:08 +0100 Subject: [PATCH] Begin implementing predict_single hyperparameter in BoostAODE --- CHANGELOG.md | 3 ++- src/BoostAODE.cc | 31 ++++++++++++++++++++++++++++--- src/BoostAODE.h | 8 ++++++-- tests/TestBayesModels.cc | 22 ++++++++++++++++++++-- 4 files changed, 56 insertions(+), 8 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 8bea3e3..47d09a5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,7 +9,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### Added -- Change _ascending_ hyperparameter to _order_ with these possible values _{"asc", "desc", "rand"}_ +- Change _ascending_ hyperparameter to _order_ with these possible values _{"asc", "desc", "rand"}_, Default is _"desc"_. +- Add the _predict_single_ hyperparameter to control if only the last model created is used to predict in boost training or the whole ensemble (all the models built so far). Default is true. ## [1.0.3] diff --git a/src/BoostAODE.cc b/src/BoostAODE.cc index 9f11f02..10eb694 100644 --- a/src/BoostAODE.cc +++ b/src/BoostAODE.cc @@ -10,7 +10,10 @@ namespace bayesnet { BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting) { - validHyperparameters = { "repeatSparent", "maxModels", "order", "convergence", "threshold", "select_features", "tolerance", "predict_voting" }; + validHyperparameters = { + "repeatSparent", "maxModels", "order", "convergence", "threshold", + "select_features", "tolerance", "predict_voting", "predict_single" + }; } void BoostAODE::buildModel(const torch::Tensor& weights) @@ -69,6 +72,10 @@ namespace bayesnet { convergence = hyperparameters["convergence"]; hyperparameters.erase("convergence"); } + if (hyperparameters.contains("predict_single")) { + predict_single = hyperparameters["predict_single"]; + hyperparameters.erase("predict_single"); + } if (hyperparameters.contains("threshold")) { threshold = hyperparameters["threshold"]; hyperparameters.erase("threshold"); @@ -116,7 +123,6 @@ namespace bayesnet { featureSelector->fit(); auto cfsFeatures = featureSelector->getFeatures(); for (const int& feature : cfsFeatures) { - // std::cout << "Feature: [" << feature << "] " << feature << " " << features.at(feature) << std::endl; featuresUsed.insert(feature); std::unique_ptr model = std::make_unique(feature); model->fit(dataset, features, className, states, weights_); @@ -128,8 +134,22 @@ namespace bayesnet { delete featureSelector; return featuresUsed; } + torch::Tensor BoostAODE::ensemble_predict(torch::Tensor& X, SPODE* model) + { + if (initialize_prob_table) { + initialize_prob_table = false; + prob_table = model->predict_proba(X) * 1.0; + } else { + prob_table += model->predict_proba(X) * 1.0; + } + // prob_table doesn't store probabilities but the sum of them + // to have them we need to divide by the sum of the significances but we + // don't need them to predict label values + return prob_table.argmax(1); + } void BoostAODE::trainModel(const torch::Tensor& weights) { + initialize_prob_table = true; fitted = true; // Algorithm based on the adaboost algorithm for classification // as explained in Ensemble methods (Zhi-Hua Zhou, 2012) @@ -181,7 +201,12 @@ namespace bayesnet { std::unique_ptr model; model = std::make_unique(feature); model->fit(dataset, features, className, states, weights_); - auto ypred = model->predict(X_train); + torch::Tensor ypred; + if (predict_single) { + ypred = model->predict(X_train); + } else { + ypred = ensemble_predict(X_train, dynamic_cast(model.get())); + } // Step 3.1: Compute the classifier amout of say auto mask_wrong = ypred != y_train; auto mask_right = ypred == y_train; diff --git a/src/BoostAODE.h b/src/BoostAODE.h index 7119194..c58bc3e 100644 --- a/src/BoostAODE.h +++ b/src/BoostAODE.h @@ -15,17 +15,21 @@ namespace bayesnet { void buildModel(const torch::Tensor& weights) override; void trainModel(const torch::Tensor& weights) override; private: + std::unordered_set initializeModels(); + torch::Tensor ensemble_predict(torch::Tensor& X, SPODE* model); torch::Tensor dataset_; torch::Tensor X_train, y_train, X_test, y_test; - std::unordered_set initializeModels(); // Hyperparameters bool repeatSparent = false; // if true, a feature can be selected more than once int maxModels = 0; int tolerance = 0; + bool predict_single = true; // wether the last model is used to predict in training or the whole ensemble std::string order_algorithm; // order to process the KBest features asc, desc, rand bool convergence = false; //if true, stop when the model does not improve bool selectFeatures = false; // if true, use feature selection - std::string select_features_algorithm = ""; // Selected feature selection algorithm + std::string select_features_algorithm = "desc"; // Selected feature selection algorithm + bool initialize_prob_table; // if true, initialize the prob_table with the first model (used in train) + torch::Tensor prob_table; // Table of probabilities for ensemble predicting if predict_single is false FeatureSelect* featureSelector = nullptr; double threshold = -1; }; diff --git a/tests/TestBayesModels.cc b/tests/TestBayesModels.cc index 0234747..c88f571 100644 --- a/tests/TestBayesModels.cc +++ b/tests/TestBayesModels.cc @@ -240,10 +240,28 @@ TEST_CASE("BoostAODE order asc, desc & random", "[BayesNet]") clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); auto score = clf.score(raw.Xv, raw.yv); auto scoret = clf.score(raw.Xt, raw.yt); - auto score2 = clf.score(raw.Xv, raw.yv); - auto scoret2 = clf.score(raw.Xt, raw.yt); INFO("order: " + order); REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon)); REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon)); } } +TEST_CASE("BoostAODE predict_single", "[BayesNet]") +{ + + auto raw = RawDatasets("glass", true); + std::map scores{ + {true, 0.84579f }, { false, 0.81308f } + }; + for (const bool kind : { true, false}) { + auto clf = bayesnet::BoostAODE(); + clf.setHyperparameters({ + {"predict_single", kind}, {"order", "desc" }, + }); + clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv); + auto score = clf.score(raw.Xv, raw.yv); + auto scoret = clf.score(raw.Xt, raw.yt); + INFO("kind: " + std::string(kind ? "true" : "false")); + REQUIRE(score == Catch::Approx(scores[kind]).epsilon(raw.epsilon)); + REQUIRE(scoret == Catch::Approx(scores[kind]).epsilon(raw.epsilon)); + } +}