refactor predict and predict_proba
This commit is contained in:
parent
c22eba3d5c
commit
c4836bd5e3
@ -151,13 +151,17 @@ namespace bayesnet {
|
|||||||
for (int col = 0; col < samples.size(); ++col) {
|
for (int col = 0; col < samples.size(); ++col) {
|
||||||
sample.push_back(samples[col][row]);
|
sample.push_back(samples[col][row]);
|
||||||
}
|
}
|
||||||
predictions.push_back(predict_sample(sample).first);
|
vector<double> classProbabilities = predict_sample(sample);
|
||||||
|
// Find the class with the maximum posterior probability
|
||||||
|
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||||
|
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||||
|
predictions.push_back(predictedClass);
|
||||||
}
|
}
|
||||||
return predictions;
|
return predictions;
|
||||||
}
|
}
|
||||||
vector<pair<int, double>> Network::predict_proba(const vector<vector<int>>& samples)
|
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& samples)
|
||||||
{
|
{
|
||||||
vector<pair<int, double>> predictions;
|
vector<vector<double>> predictions;
|
||||||
vector<int> sample;
|
vector<int> sample;
|
||||||
for (int row = 0; row < samples[0].size(); ++row) {
|
for (int row = 0; row < samples[0].size(); ++row) {
|
||||||
sample.clear();
|
sample.clear();
|
||||||
@ -179,7 +183,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return (double)correct / y_pred.size();
|
return (double)correct / y_pred.size();
|
||||||
}
|
}
|
||||||
pair<int, double> Network::predict_sample(const vector<int>& sample)
|
vector<double> Network::predict_sample(const vector<int>& sample)
|
||||||
{
|
{
|
||||||
// Ensure the sample size is equal to the number of features
|
// Ensure the sample size is equal to the number of features
|
||||||
if (sample.size() != features.size()) {
|
if (sample.size() != features.size()) {
|
||||||
@ -190,14 +194,8 @@ namespace bayesnet {
|
|||||||
for (int i = 0; i < sample.size(); ++i) {
|
for (int i = 0; i < sample.size(); ++i) {
|
||||||
evidence[features[i]] = sample[i];
|
evidence[features[i]] = sample[i];
|
||||||
}
|
}
|
||||||
vector<double> classProbabilities = exactInference(evidence);
|
return exactInference(evidence);
|
||||||
|
|
||||||
// Find the class with the maximum posterior probability
|
|
||||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
|
||||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
|
||||||
double maxProbability = *maxElem;
|
|
||||||
|
|
||||||
return make_pair(predictedClass, maxProbability);
|
|
||||||
}
|
}
|
||||||
double Network::computeFactor(map<string, int>& completeEvidence)
|
double Network::computeFactor(map<string, int>& completeEvidence)
|
||||||
{
|
{
|
||||||
|
@ -16,7 +16,7 @@ namespace bayesnet {
|
|||||||
string className;
|
string className;
|
||||||
int laplaceSmoothing;
|
int laplaceSmoothing;
|
||||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||||
pair<int, double> predict_sample(const vector<int>&);
|
vector<double> predict_sample(const vector<int>&);
|
||||||
vector<double> exactInference(map<string, int>&);
|
vector<double> exactInference(map<string, int>&);
|
||||||
double computeFactor(map<string, int>&);
|
double computeFactor(map<string, int>&);
|
||||||
public:
|
public:
|
||||||
@ -34,7 +34,7 @@ namespace bayesnet {
|
|||||||
string getClassName();
|
string getClassName();
|
||||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
|
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
|
||||||
vector<int> predict(const vector<vector<int>>&);
|
vector<int> predict(const vector<vector<int>>&);
|
||||||
vector<pair<int, double>> predict_proba(const vector<vector<int>>&);
|
vector<vector<double>> predict_proba(const vector<vector<int>>&);
|
||||||
double score(const vector<vector<int>>&, const vector<int>&);
|
double score(const vector<vector<int>>&, const vector<int>&);
|
||||||
inline string version() { return "0.1.0"; }
|
inline string version() { return "0.1.0"; }
|
||||||
};
|
};
|
||||||
|
Loading…
Reference in New Issue
Block a user