Inference working

This commit is contained in:
Ricardo Montañana Gómez 2023-07-05 18:38:54 +02:00
parent 5db4d1189a
commit ba08b8dd3d
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
12 changed files with 114 additions and 250 deletions

View File

@ -86,7 +86,9 @@
"*.tcc": "cpp",
"functional": "cpp",
"iterator": "cpp",
"memory_resource": "cpp"
"memory_resource": "cpp",
"format": "cpp",
"valarray": "cpp"
},
"cmake.configureOnOpen": false,
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"

View File

@ -2,4 +2,4 @@ class sepallength
class sepalwidth
class petallength
class petalwidth
# petalwidth petallength
petalwidth petallength

View File

@ -21,20 +21,47 @@
// std::cout << t << std::endl;
// }
#include <torch/torch.h>
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int main()
{
//torch::Tensor t = torch::rand({ 5, 4, 3 }); // 3D tensor for this example
//int i = 3, j = 1, k = 2; // Indices for the cell you want to update
// Print original tensor
torch::Tensor t = torch::tensor({ {1, 2, 3}, {4, 5, 6} }); // 3D tensor for this example
std::cout << t << std::endl;
std::cout << "sum(0)" << std::endl;
std::cout << t.sum(0) << std::endl;
std::cout << "sum(1)" << std::endl;
std::cout << t.sum(1) << std::endl;
std::cout << "Normalized" << std::endl;
std::cout << t / t.sum(0) << std::endl;
// torch::Tensor t = torch::tensor({ {1, 2, 3}, {4, 5, 6} }); // 3D tensor for this example
auto variables = vector<string>{ "A", "B" };
auto cardinalities = vector<int>{ 5, 4 };
torch::Tensor values = torch::rand({ 5, 4 });
auto candidate = "B";
vector<string> newVariables;
vector<int> newCardinalities;
for (int i = 0; i < variables.size(); i++) {
if (variables[i] != candidate) {
newVariables.push_back(variables[i]);
newCardinalities.push_back(cardinalities[i]);
}
}
torch::Tensor newValues = values.sum(1);
cout << "original values" << endl;
cout << values << endl;
cout << "newValues" << endl;
cout << newValues << endl;
cout << "newVariables" << endl;
for (auto& variable : newVariables) {
cout << variable << endl;
}
cout << "newCardinalities" << endl;
for (auto& cardinality : newCardinalities) {
cout << cardinality << endl;
}
// std::cout << t << std::endl;
// std::cout << "sum(0)" << std::endl;
// std::cout << t.sum(0) << std::endl;
// std::cout << "sum(1)" << std::endl;
// std::cout << t.sum(1) << std::endl;
// std::cout << "Normalized" << std::endl;
// std::cout << t / t.sum(0) << std::endl;
// New value
// torch::Tensor new_val = torch::tensor(10.0f);

View File

@ -1,2 +1,2 @@
add_library(BayesNet Network.cc Node.cc ExactInference.cc Factor.cc)
add_library(BayesNet Network.cc Node.cc ExactInference.cc)
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")

View File

@ -1,65 +1,30 @@
#include "ExactInference.h"
namespace bayesnet {
ExactInference::ExactInference(Network& net) : network(net), evidence(map<string, int>()), candidates(net.getFeatures()) {}
void ExactInference::setEvidence(const map<string, int>& evidence)
{
this->evidence = evidence;
}
ExactInference::~ExactInference()
{
for (auto& factor : factors) {
delete factor;
}
}
void ExactInference::buildFactors()
ExactInference::ExactInference(Network& net) : network(net) {}
double ExactInference::computeFactor(map<string, int>& completeEvidence)
{
double result = 1.0;
for (auto node : network.getNodes()) {
factors.push_back(node.second->toFactor());
}
}
string ExactInference::nextCandidate()
{
string result = "";
map<string, Node*> nodes = network.getNodes();
int minFill = INT_MAX;
for (auto candidate : candidates) {
unsigned fill = nodes[candidate]->minFill();
if (fill < minFill) {
minFill = fill;
result = candidate;
}
result *= node.second->getFactorValue(completeEvidence);
}
return result;
}
vector<double> ExactInference::variableElimination()
vector<double> ExactInference::variableElimination(map<string, int>& evidence)
{
vector<double> result;
string candidate;
buildFactors();
// Eliminate evidence
while ((candidate = nextCandidate()) != "") {
// Erase candidate from candidates (Eraseremove idiom)
candidates.erase(remove(candidates.begin(), candidates.end(), candidate), candidates.end());
// sum-product variable elimination algorithm as explained in the book probabilistic graphical models
// 1. Multiply all factors containing the variable
vector<Factor*> factorsToMultiply;
for (auto factor : factors) {
if (factor->contains(candidate)) {
factorsToMultiply.push_back(factor);
}
}
Factor* product = Factor::product(factorsToMultiply);
// 2. Sum out the variable
Factor* sum = product->sumOut(candidate);
// 3. Remove factors containing the variable
for (auto factor : factorsToMultiply) {
factors.erase(remove(factors.begin(), factors.end(), factor), factors.end());
delete factor;
}
// 4. Add the resulting factor to the list of factors
factors.push_back(sum);
int classNumStates = network.getClassNumStates();
for (int i = 0; i < classNumStates; ++i) {
result.push_back(1.0);
auto complete_evidence = map<string, int>(evidence);
complete_evidence[network.getClassName()] = i;
result[i] = computeFactor(complete_evidence);
}
// Normalize result
auto sum = accumulate(result.begin(), result.end(), 0.0);
for (int i = 0; i < result.size(); ++i) {
result[i] /= sum;
}
return result;
}

View File

@ -1,7 +1,6 @@
#ifndef EXACTINFERENCE_H
#define EXACTINFERENCE_H
#include "Network.h"
#include "Factor.h"
#include "Node.h"
#include <map>
#include <vector>
@ -12,16 +11,10 @@ namespace bayesnet {
class ExactInference {
private:
Network network;
map<string, int> evidence;
vector<Factor*> factors;
vector<string> candidates; // variables to be removed
void buildFactors();
string nextCandidate(); // Return the next variable to eliminate using MinFill criterion
double computeFactor(map<string, int>&);
public:
ExactInference(Network&);
~ExactInference();
void setEvidence(const map<string, int>&);
vector<double> variableElimination();
vector<double> variableElimination(map<string, int>&);
};
}
#endif

View File

@ -1,87 +0,0 @@
#include "Factor.h"
#include <vector>
#include <string>
using namespace std;
namespace bayesnet {
Factor::Factor(vector<string>& variables, vector<int>& cardinalities, torch::Tensor& values) : variables(variables), cardinalities(cardinalities), values(values) {}
Factor::~Factor() = default;
Factor::Factor(const Factor& other) : variables(other.variables), cardinalities(other.cardinalities), values(other.values) {}
Factor& Factor::operator=(const Factor& other)
{
if (this != &other) {
variables = other.variables;
cardinalities = other.cardinalities;
values = other.values;
}
return *this;
}
void Factor::setVariables(vector<string>& variables)
{
this->variables = variables;
}
void Factor::setCardinalities(vector<int>& cardinalities)
{
this->cardinalities = cardinalities;
}
void Factor::setValues(torch::Tensor& values)
{
this->values = values;
}
vector<string>& Factor::getVariables()
{
return variables;
}
vector<int>& Factor::getCardinalities()
{
return cardinalities;
}
torch::Tensor& Factor::getValues()
{
return values;
}
bool Factor::contains(string& variable)
{
for (int i = 0; i < variables.size(); i++) {
if (variables[i] == variable) {
return true;
}
}
return false;
}
Factor* Factor::sumOut(string& candidate)
{
vector<string> newVariables;
vector<int> newCardinalities;
for (int i = 0; i < variables.size(); i++) {
if (variables[i] != candidate) {
newVariables.push_back(variables[i]);
newCardinalities.push_back(cardinalities[i]);
}
}
torch::Tensor newValues = values.sum(0);
return new Factor(newVariables, newCardinalities, newValues);
}
Factor* Factor::product(vector<Factor*>& factors)
{
vector<string> newVariables;
vector<int> newCardinalities;
for (auto factor : factors) {
vector<string> variables = factor->getVariables();
for (auto idx = 0; idx < variables.size(); ++idx) {
string variable = variables[idx];
if (find(newVariables.begin(), newVariables.end(), variable) == newVariables.end()) {
newVariables.push_back(variable);
newCardinalities.push_back(factor->getCardinalities()[idx]);
}
}
}
torch::Tensor newValues = factors[0]->getValues();
for (int i = 1; i < factors.size(); i++) {
newValues = newValues.matmul(factors[i]->getValues());
}
return new Factor(newVariables, newCardinalities, newValues);
}
}

View File

@ -1,31 +0,0 @@
#ifndef FACTOR_H
#define FACTOR_H
#include <torch/torch.h>
#include <vector>
#include <string>
using namespace std;
namespace bayesnet {
class Factor {
private:
vector<string> variables;
vector<int> cardinalities;
torch::Tensor values;
public:
Factor(vector<string>&, vector<int>&, torch::Tensor&);
~Factor();
Factor(const Factor&);
Factor& operator=(const Factor&);
void setVariables(vector<string>&);
void setCardinalities(vector<int>&);
void setValues(torch::Tensor&);
vector<string>& getVariables();
vector<int>& getCardinalities();
bool contains(string&);
torch::Tensor& getValues();
static Factor* product(vector<Factor*>&);
Factor* sumOut(string&);
};
}
#endif

View File

@ -1,9 +1,9 @@
#include "Network.h"
#include "ExactInference.h"
namespace bayesnet {
Network::Network() : laplaceSmoothing(1), root(nullptr), features(vector<string>()), className("") {}
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr), features(vector<string>()), className("") {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), root(other.root), features(other.features), className(other.className)
Network::Network() : laplaceSmoothing(1), root(nullptr), features(vector<string>()), className(""), classNumStates(0) {}
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr), features(vector<string>()), className(""), classNumStates(0) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), root(other.root), features(other.features), className(other.className), classNumStates(other.getClassNumStates())
{
for (auto& pair : other.nodes) {
nodes[pair.first] = new Node(*pair.second);
@ -31,6 +31,14 @@ namespace bayesnet {
{
return features;
}
int Network::getClassNumStates()
{
return classNumStates;
}
string Network::getClassName()
{
return className;
}
void Network::setRoot(string name)
{
if (nodes.find(name) == nodes.end()) {
@ -93,6 +101,7 @@ namespace bayesnet {
this->dataset[featureNames[i]] = dataset[i];
}
this->dataset[className] = labels;
this->classNumStates = *max_element(labels.begin(), labels.end()) + 1;
estimateParameters();
}
@ -100,29 +109,7 @@ namespace bayesnet {
{
auto dimensions = vector<int64_t>();
for (auto [name, node] : nodes) {
// Get dimensions of the CPT
dimensions.clear();
dimensions.push_back(node->getNumStates());
for (auto father : node->getParents()) {
dimensions.push_back(father->getNumStates());
}
auto length = dimensions.size();
// Create a tensor of zeros with the dimensions of the CPT
torch::Tensor cpt = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
for (auto father : node->getParents()) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
}
// Increment the count of the corresponding coordinate
cpt.index_put_({ coordinates }, cpt.index({ coordinates }) + 1);
}
// Normalize the counts
cpt = cpt / cpt.sum(0);
// store thre resulting cpt in the node
node->setCPT(cpt);
node->computeCPT(dataset, laplaceSmoothing);
}
}
@ -175,14 +162,8 @@ namespace bayesnet {
for (int i = 0; i < sample.size(); ++i) {
evidence[features[i]] = sample[i];
}
inference.setEvidence(evidence);
vector<double> classProbabilities = inference.variableElimination();
vector<double> classProbabilities = inference.variableElimination(evidence);
// Normalize the probabilities to sum to 1
double sum = accumulate(classProbabilities.begin(), classProbabilities.end(), 0.0);
for (double& prob : classProbabilities) {
prob /= sum;
}
// Find the class with the maximum posterior probability
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
int predictedClass = distance(classProbabilities.begin(), maxElem);

View File

@ -11,6 +11,7 @@ namespace bayesnet {
map<string, Node*> nodes;
map<string, vector<int>> dataset;
Node* root;
int classNumStates;
vector<string> features;
string className;
int laplaceSmoothing;
@ -25,6 +26,8 @@ namespace bayesnet {
void addEdge(const string, const string);
map<string, Node*>& getNodes();
vector<string> getFeatures();
int getClassNumStates();
string getClassName();
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
void estimateParameters();
void setRoot(string);

View File

@ -1,10 +1,9 @@
#include "Node.h"
namespace bayesnet {
int Node::next_id = 0;
Node::Node(const std::string& name, int numStates)
: id(next_id++), name(name), numStates(numStates), cpt(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
{
}
@ -47,11 +46,7 @@ namespace bayesnet {
}
torch::Tensor& Node::getCPT()
{
return cpt;
}
void Node::setCPT(const torch::Tensor& cpt)
{
this->cpt = cpt;
return cpTable;
}
/*
The MinFill criterion is a heuristic for variable elimination.
@ -83,17 +78,37 @@ namespace bayesnet {
}
return result;
}
Factor* Node::toFactor()
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing)
{
vector<string> variables;
vector<int> cardinalities;
variables.push_back(name);
cardinalities.push_back(numStates);
for (auto parent : parents) {
variables.push_back(parent->getName());
cardinalities.push_back(parent->getNumStates());
// Get dimensions of the CPT
dimensions.push_back(numStates);
for (auto father : getParents()) {
dimensions.push_back(father->getNumStates());
}
return new Factor(variables, cardinalities, cpt);
auto length = dimensions.size();
// Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
for (auto father : getParents()) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
}
// Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
}
// Normalize the counts
cpTable = cpTable / cpTable.sum(0);
}
float Node::getFactorValue(map<string, int>& evidence)
{
torch::List<c10::optional<torch::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(torch::tensor(evidence[name]));
for (auto parent : getParents()) {
coordinates.push_back(torch::tensor(evidence[parent->getName()]));
}
return cpTable.index({ coordinates }).item<float>();
}
}

View File

@ -1,21 +1,18 @@
#ifndef NODE_H
#define NODE_H
#include <torch/torch.h>
#include "Factor.h"
#include <vector>
#include <string>
namespace bayesnet {
using namespace std;
class Node {
private:
static int next_id;
const int id;
string name;
vector<Node*> parents;
vector<Node*> children;
torch::Tensor cpTable;
int numStates;
torch::Tensor cpt;
int numStates; // number of states of the variable
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
vector<int64_t> dimensions; // dimensions of the cpTable
vector<string> combinations(const set<string>&);
public:
Node(const std::string&, int);
@ -27,12 +24,11 @@ namespace bayesnet {
vector<Node*>& getParents();
vector<Node*>& getChildren();
torch::Tensor& getCPT();
void setCPT(const torch::Tensor&);
void computeCPT(map<string, vector<int>>&, const int);
int getNumStates() const;
void setNumStates(int);
unsigned minFill();
int getId() const { return id; }
Factor* toFactor();
float getFactorValue(map<string, int>&);
};
}
#endif